- #1
Morberticus
- 85
- 0
Hi,
I have a question about the Fourier transform of [itex]\frac{1}{|\mathbf{r_1} - \mathbf{r_2}|}[/itex] over a finite cube of unit volume. Where [itex]|\mathbf{r_1} - \mathbf{r_2}|[/itex] is [itex]\sqrt{(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2}[/itex]
I know it looks like
[itex]\sum_\mathbf{k} f_k e^{-i\mathbf{k}\cdot (\mathbf{r_1}-\mathbf{r_2})}[/itex]
where f_k is the Fourier coefficient
[itex]f_k = \frac{1}{V} \int_V \frac {e^{-i\mathbf{k} \cdot \mathbf{r} } } {|\mathbf{r}| } d\mathbf{r}[/itex]
over the volume {-1,1}{-1,1}{-1,1}
My question is, what happens when [itex]\frac{1}{|\mathbf{r_1} - \mathbf{r_2}|}[/itex] is not radially symmetric. Say [itex]|\mathbf{r_1} - \mathbf{r_2}|[/itex] is
[itex]\sqrt{(x_1-x_2)^2 + a(y_1-y_2)^2 + b(z_1-z_2)^2}[/itex]
would the expression then become
[itex]\sum_\mathbf{k} f_k e^{-i\mathbf{k}\cdot (x_1-x_2)}e^{-i\mathbf{k}\cdot a(y_1-y_2)}e^{-i\mathbf{k}\cdot b(z_1-z_2)}[/itex]
and would the coefficient f_k be affected? My guess is yes it would be over the interval {-1,1},{-a,a},{-b,b}
Is this correct?
Thanks
I have a question about the Fourier transform of [itex]\frac{1}{|\mathbf{r_1} - \mathbf{r_2}|}[/itex] over a finite cube of unit volume. Where [itex]|\mathbf{r_1} - \mathbf{r_2}|[/itex] is [itex]\sqrt{(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2}[/itex]
I know it looks like
[itex]\sum_\mathbf{k} f_k e^{-i\mathbf{k}\cdot (\mathbf{r_1}-\mathbf{r_2})}[/itex]
where f_k is the Fourier coefficient
[itex]f_k = \frac{1}{V} \int_V \frac {e^{-i\mathbf{k} \cdot \mathbf{r} } } {|\mathbf{r}| } d\mathbf{r}[/itex]
over the volume {-1,1}{-1,1}{-1,1}
My question is, what happens when [itex]\frac{1}{|\mathbf{r_1} - \mathbf{r_2}|}[/itex] is not radially symmetric. Say [itex]|\mathbf{r_1} - \mathbf{r_2}|[/itex] is
[itex]\sqrt{(x_1-x_2)^2 + a(y_1-y_2)^2 + b(z_1-z_2)^2}[/itex]
would the expression then become
[itex]\sum_\mathbf{k} f_k e^{-i\mathbf{k}\cdot (x_1-x_2)}e^{-i\mathbf{k}\cdot a(y_1-y_2)}e^{-i\mathbf{k}\cdot b(z_1-z_2)}[/itex]
and would the coefficient f_k be affected? My guess is yes it would be over the interval {-1,1},{-a,a},{-b,b}
Is this correct?
Thanks