A How Does One Calculate the Time Evolution of a Photon in a Vacuum State?

deepalakshmi
Messages
95
Reaction score
6
TL;DR Summary
How to evolve one photon using hamiltonian as beam splitter
During time evolution of one photon with vacuum state with hamiltonian as a^†b+b^†a, the answer is cos(t/ℏ)|0,1⟩+isin(t/ℏ)|1,0⟩. But i don't know how to do calculation to get this answer. Can someone please help me?
I tried to do this calculation:
|0⟩|1⟩(t)=e−iHtℏ|0⟩|1⟩
=(cos(tH/ℏ)−isin(tH/ℏ)) |0⟩|1⟩
=[cos(t/ℏ)−isin(t/ℏ)] H|0⟩|1⟩
=[cos(t/ℏ)−isin(t/ℏ)] [|0⟩|1⟩+i|1⟩|0⟩]

How to proceed?
 
Last edited:
Physics news on Phys.org
A:The Hamiltonian you are using is the Jaynes-Cummings Hamiltonian, which can be written as $$H=\hbar \omega (a^{\dagger}a+b^{\dagger}b+1/2).$$For this Hamiltonian, the time evolution of a state $|\psi(0)\rangle$ is given by $$|\psi(t)\rangle=e^{-iHt/\hbar}|\psi(0)\rangle.$$You are considering the initial state to be $|\psi(0)\rangle=|0\rangle|1\rangle$. Applying the time evolution operator to this state, we have\begin{align*}|\psi(t)\rangle&=e^{-iHt/\hbar}|0\rangle|1\rangle\\&=e^{-i\hbar \omega t/2}|0\rangle|1\rangle-ie^{-i\hbar \omega t/2}|1\rangle|0\rangle\\&=\cos(\omega t/2)|0\rangle|1\rangle+\sin(\omega t/2)|1\rangle|0\rangle\end{align*}This is the answer you are looking for. Note that I have used $\hbar \omega$ instead of $t/\hbar$ to make it consistent with the Hamiltonian.
 
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Back
Top