- #1
Diracobama2181
- 75
- 3
- TL;DR Summary
- I am currently trying to regularize integrals by using the Pauli-Villars scheme, and wanted to check if my setup is correct
For the below integral in Euclidean space,
$$\int d^4k_E k_E^2 \frac{1}{(k_E^2+M(\Delta))^2}= 2\pi^2\int dk_E k_E^5 \frac{1}{(k_E^2+M(\Delta))^2}$$
we find
$$2\pi^2\int_0^{\infty} dk_E k_E^5 \frac{1}{(k_E^2+M(\Delta))^2}\xrightarrow{}2\pi^2\int_0^{\infty} dk_E k_E^5(\frac{1}{k_E^2+M}-\frac{1}{k_E^2+\Lambda^2})(\frac{1}{k_E^2+M}-\frac{1}{k_E^2+\Lambda^2})\\
=2\pi^2(\Lambda^2-M)^2\int_0^{\infty} dk_E k_E^5\frac{1}{(k_E^2+M)^2(k_E^2+\Lambda)^2}$$
Is this setup correct? Thank you
$$\int d^4k_E k_E^2 \frac{1}{(k_E^2+M(\Delta))^2}= 2\pi^2\int dk_E k_E^5 \frac{1}{(k_E^2+M(\Delta))^2}$$
we find
$$2\pi^2\int_0^{\infty} dk_E k_E^5 \frac{1}{(k_E^2+M(\Delta))^2}\xrightarrow{}2\pi^2\int_0^{\infty} dk_E k_E^5(\frac{1}{k_E^2+M}-\frac{1}{k_E^2+\Lambda^2})(\frac{1}{k_E^2+M}-\frac{1}{k_E^2+\Lambda^2})\\
=2\pi^2(\Lambda^2-M)^2\int_0^{\infty} dk_E k_E^5\frac{1}{(k_E^2+M)^2(k_E^2+\Lambda)^2}$$
Is this setup correct? Thank you