- #1
ergospherical
- 1,072
- 1,365
Trying to get my head around how to use phase-sensitive detection to eliminate noise. If the input (say, ##\cos{\omega_{\mathrm{in}} t}##) is modulated by a sinusoidal reference signal at ##\omega_0## with phase shift ##\phi##, fed through the amplifier (gain ##\kappa##) and then de-modulated by a square reference signal also at ##\omega_0## (but in phase with the input, say, for simplicity), then tracking the signal through the circuit should give:\begin{align*}
\cos{(\omega_{\mathrm{in}} t)} &\overset{\mathrm{modulate}}{\longrightarrow} \cos{(\omega_{\mathrm{in}} t)} \cos{(\omega_{0} t+ \phi)} \\ \\
&\overset{\mathrm{add \, noise}}{\longrightarrow} \cos{(\omega_{\mathrm{in}} t)} \cos{(\omega_{0}t+ \phi)} + \cos{(\omega_{\mathrm{noise}} t + \theta_{\mathrm{noise}})} \\ \\
&\overset{\mathrm{amplify}}{\longrightarrow} \kappa \cos{(\omega_{\mathrm{in}} t)} \cos{(\omega_{0} t+ \phi)} + \kappa \cos{(\omega_{\mathrm{noise}} t + \theta_{\mathrm{noise}})} \\ \\
&\overset{\mathrm{de-modulate}}{\longrightarrow} \kappa \cos{(\omega_{\mathrm{in}} t)} \cos{(\omega_{0} t+ \phi)} \mathrm{sgn}(\sin{(\omega_{0} t)}) +\kappa \cos{(\omega_{\mathrm{noise}} t + \theta_{\mathrm{noise}})} \mathrm{sgn}(\sin{(\omega_{0} t)}) \\ \\
\end{align*}Time-averaging over a cycle of the (de-)modulator,\begin{align*}
\langle \mathrm{output} \rangle &\sim \dfrac{\omega_0 \kappa}{2\pi} \int_{0}^{\pi / \omega_0} \left( \cos{(\omega_{\mathrm{in}} t)} \cos{(\omega_{0} t+ \phi)} + \cos{(\omega_{\mathrm{noise}} t + \theta_{\mathrm{noise}})} \right) dt \\ \\
&\quad\quad\quad\quad- \dfrac{\omega_0 \kappa}{2\pi} \int_{\pi/\omega_0}^{2\pi / \omega_0} \left( \cos{(\omega_{\mathrm{in}} t)} \cos{(\omega_{0} t+ \phi)} + \cos{(\omega_{\mathrm{noise}} t + \theta_{\mathrm{noise}})} \right) dt
\end{align*}
This is not a very nice integral, and also it's not clear why the noise should disappear except in the case that ##\omega_{\mathrm{noise}} \gg \omega_{0}##. Even then, I'm not sure how the input signal is recovered...
\cos{(\omega_{\mathrm{in}} t)} &\overset{\mathrm{modulate}}{\longrightarrow} \cos{(\omega_{\mathrm{in}} t)} \cos{(\omega_{0} t+ \phi)} \\ \\
&\overset{\mathrm{add \, noise}}{\longrightarrow} \cos{(\omega_{\mathrm{in}} t)} \cos{(\omega_{0}t+ \phi)} + \cos{(\omega_{\mathrm{noise}} t + \theta_{\mathrm{noise}})} \\ \\
&\overset{\mathrm{amplify}}{\longrightarrow} \kappa \cos{(\omega_{\mathrm{in}} t)} \cos{(\omega_{0} t+ \phi)} + \kappa \cos{(\omega_{\mathrm{noise}} t + \theta_{\mathrm{noise}})} \\ \\
&\overset{\mathrm{de-modulate}}{\longrightarrow} \kappa \cos{(\omega_{\mathrm{in}} t)} \cos{(\omega_{0} t+ \phi)} \mathrm{sgn}(\sin{(\omega_{0} t)}) +\kappa \cos{(\omega_{\mathrm{noise}} t + \theta_{\mathrm{noise}})} \mathrm{sgn}(\sin{(\omega_{0} t)}) \\ \\
\end{align*}Time-averaging over a cycle of the (de-)modulator,\begin{align*}
\langle \mathrm{output} \rangle &\sim \dfrac{\omega_0 \kappa}{2\pi} \int_{0}^{\pi / \omega_0} \left( \cos{(\omega_{\mathrm{in}} t)} \cos{(\omega_{0} t+ \phi)} + \cos{(\omega_{\mathrm{noise}} t + \theta_{\mathrm{noise}})} \right) dt \\ \\
&\quad\quad\quad\quad- \dfrac{\omega_0 \kappa}{2\pi} \int_{\pi/\omega_0}^{2\pi / \omega_0} \left( \cos{(\omega_{\mathrm{in}} t)} \cos{(\omega_{0} t+ \phi)} + \cos{(\omega_{\mathrm{noise}} t + \theta_{\mathrm{noise}})} \right) dt
\end{align*}
This is not a very nice integral, and also it's not clear why the noise should disappear except in the case that ##\omega_{\mathrm{noise}} \gg \omega_{0}##. Even then, I'm not sure how the input signal is recovered...