- #1
mike_302
- 103
- 0
I am given the task to make an egg holder for a 20 foot drop. I have been looking at designs all night and I have come across a website that tells me about the best results from their school, of all time. There is one particular design that the teacher praises where they used a tylenol box, JUST barely big enough for the egg, and they packed it TIGHT with foam. IT says the tighter the better. Now, The site says this design has never cracked an egg, even from a 50 foot drop. Can someone explain the physics behind this?
Then it also says that the most proven way to make ANY egg holder design is the more rigid styrofoam board... Like the stuff that has the tiny styrofoam balls. Supposedly this stuff is purely amazing. Again, I don't understand the physics behind this.
I'll explain what hinders me.
I think that you need to let the egg move. I think of the dropper as something that doesn't stop the egg DEAD, but makes it land over a longer period. The tiny tylenol box with foam sounds to me like it would absorb ALLL the energy, and the egg really gets a big dose of energy from that... My brain tells me that it would crack instantly... Yet it's supposedly the very best contraption ever built for this project.
Again, could someone explain this physics to me?
Then it also says that the most proven way to make ANY egg holder design is the more rigid styrofoam board... Like the stuff that has the tiny styrofoam balls. Supposedly this stuff is purely amazing. Again, I don't understand the physics behind this.
I'll explain what hinders me.
I think that you need to let the egg move. I think of the dropper as something that doesn't stop the egg DEAD, but makes it land over a longer period. The tiny tylenol box with foam sounds to me like it would absorb ALLL the energy, and the egg really gets a big dose of energy from that... My brain tells me that it would crack instantly... Yet it's supposedly the very best contraption ever built for this project.
Again, could someone explain this physics to me?