How Does Rocket Ejection Mass Affect Its Velocity in Space?

AI Thread Summary
The discussion centers on how rocket ejection mass affects its velocity in space, specifically using conservation of momentum to derive the final velocity after mass is ejected. It is established that as the rocket ejects a small mass, the change in velocity can be expressed as v' = v + (udm)/(m-dm), where v is the initial velocity. The confusion arises when considering the limit as dm approaches zero, leading to the conclusion that the velocity remains unchanged. However, it is clarified that this limit cannot be applied when seeking the change in velocity (dv) due to mass ejection. Ultimately, the velocity does change, but the analysis must account for small contributions rather than ignoring them entirely.
Father_Ing
Messages
33
Reaction score
3
Homework Statement
-
Relevant Equations
momentum conservation
Consider a rocket with mass ##m## in space is going to move forward. In order to do so, it needs to eject mass backwards. Let the mass that is ejected has velocity ##u## relative to the rocket. What is the equation for the final velocity?

It is said that after ##dt## second, the rocket will have mass ##m-dm##, and velocity ##v+dv##.But, isn't it also possible for the speed to increase in high sum after a very small amount of time, or even, not changing at all?

And I tried to find this out by using conservation of momentum.
Let ##v'## be the rocket's speed after ##dt## second, and ##v## is the initial speed.
$$mv = dm(v-u)+(m-dm)v'$$
$$v'=\frac {(m-dm)v +udm}{m-dm}$$

$$v'=v+\frac {udm}{m-dm}$$
Since ##dm## is small, we can take the limit of dm->0. Therefore,$$v'= v$$
It can be concluded that the velocity neither increase nor decrease.

But, I searched about this matter in the internet, and they said that ##v'## is ##v+dv##. Are there any mistakes in my method?
 
Physics news on Phys.org
Father_Ing said:
Homework Statement:: -
Relevant Equations:: momentum conservation

Since dm is small, we can take the limit of dm->0.
No you cannot. You are looking for dv, the small change in velocity when you eject mass dm. Obviously, if you do not eject any mass at all (ie, take the limit dm -> 0), then velocity does not change.

You want to find the change dv while ignoring higher order contributions (ie, ##dm^2## etc).
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top