- #1
haydn
- 27
- 0
Homework Statement
Two astronauts, each having a mass M, are connected by a rope of length d having negligible mass. They are isolated in space, orbiting their center of mass at speeds v. (Use M, d, and v as appropriate in your equations for each of the following questions.)
By pulling on the rope, one of the astronauts shortens the distance between them to d/3.
(c) What is the new angular momentum of the system?
Homework Equations
L = mvrsin[tex]\theta[/tex]
L = I[tex]\omega[/tex]
The Attempt at a Solution
I calculated the angular momentum when the two astronauts were a distance d between each other and got the correct answer, L = Mvd
For the new angular momentum, I thought I would do the same thing just replacing r in the first equation listed above:
distance between astronaut and pivot point = (1/6)d
L (per astronaut) = Mv(1/6)d
2L = (1/3)Mvd
The website I'm using is telling me it's wrong though... can anyone help?P.S. in the picture it shows the pivot point being the center of the rope connecting the astronauts.