- #1
Jezza
- 37
- 0
Homework Statement
[/B]
This is a computing coursework problem. (There is a reasonably long theory preamble).
Create a single slit centred on the origin (the centre of your array) width 10 and height 1. The array containing the imaginary parts will be zero and the array containing the real parts will be 1 for the 10 elements at either side of the centre of the array and zero otherwise. (This constitutes the function f(x) in DFT equation shown below.)
Calculate the DFT of this single slit function and plot the real part and the amplitude of the transform.
Homework Equations
[/B]
The (1D) Fourier transform can be approximated as a sum over discrete values
[tex]
F(u) = \frac{1}{2N} \sum_{x=-N}^{N-1} \left( f(x) e ^ {-\frac{\pi i x u}{N}} \right)
[/tex]
Where [itex]i[/itex] is the imaginary unit.
The Attempt at a Solution
Where does the 'height' of the slit come into a 1D problem? I would write it off as ignorable information, but for the fact that I'm later asked to halve the height of the slit and repeat the calculation. The only thing I can think of is to halve the intensity of the source, but I can't help feeling the consequences of that are trivial and so not worth the trouble.