- #1
jaded18
- 150
- 0
http://session.masteringphysics.com/problemAsset/1011221/19/SFL_ap_6a.jpg
A cylindrical beaker of height 0.100 {m} and negligible weight is filled to the brim with a fluid of density rho = 890 {kg/m}^3. When the beaker is placed on a scale, its weight is measured to be 1.00 {N}. View Figure
A ball of density rho_b = 5000 {kg/m}^3 and volume V = 60.0 {cm}^3 is then submerged in the fluid, so that some of the fluid spills over the side of the beaker. The ball is held in place by a stiff rod of negligible volume and weight. Throughout the problem, assume the acceleration due to gravity is g = 9.81
------> What is the reading W_2 of the scale when the ball is held in this submerged position? Assume that none of the water that spills over stays on the scale.
________________________________________________________________
I know that the weight of the ball is 2.94 N, and that the beaker is 1 N... And that pressure= F/A and pressure = p_0 + density of liquid(gh) ... Help??
A cylindrical beaker of height 0.100 {m} and negligible weight is filled to the brim with a fluid of density rho = 890 {kg/m}^3. When the beaker is placed on a scale, its weight is measured to be 1.00 {N}. View Figure
A ball of density rho_b = 5000 {kg/m}^3 and volume V = 60.0 {cm}^3 is then submerged in the fluid, so that some of the fluid spills over the side of the beaker. The ball is held in place by a stiff rod of negligible volume and weight. Throughout the problem, assume the acceleration due to gravity is g = 9.81
------> What is the reading W_2 of the scale when the ball is held in this submerged position? Assume that none of the water that spills over stays on the scale.
________________________________________________________________
I know that the weight of the ball is 2.94 N, and that the beaker is 1 N... And that pressure= F/A and pressure = p_0 + density of liquid(gh) ... Help??