- #1
frenzal_dude
- 77
- 0
Homework Statement
Hi, I need to find the Fourier Transform of:
g(t) = (e^-t)Sin(Wct)u(t)
where Wc=2πFc
and u(t) is the step function which is equal to 1 if time is +ve and 0 otherwise.
Homework Equations
I know that g(t) = (e^-t)[e^jWct - e^-jWct]/2j = [e^-t(1+jWc) - e^t(-1-jWc)]/(2j)
(0<=t<=∞, because of step function u(t))
The Attempt at a Solution
Therefore the Fourier Transform would be:
[1/(2j)]*∫([e^-t(1+jWc) - e^t(-1-jWc)])(e^-jWt)dt
= [1/(2j)]*∫([e^-t(1-jWc+jW) - e^t(-1-jWc-jW)])dt (limits: t=∞ to t=0)
= [1/(2j)][(e^-t(1-jWc+jW))/(-(1-jWc+jW)) - (e^t(-1-jWc-jW))/(-1-jWc-jW)] (sub in: t=∞ to t=0)
If you sub t=+/-∞, the exponential could be 0 or it could be infinite depending on whether 1-jWc+jW and -1-jWc-jW are -ve or +ve.
How can we know if they are positive or negative?
Hope you guys can help!
David.
Last edited: