How Does Substitution Affect Double Integration and Differentiation?

In summary, substitution in double integration and differentiation involves changing variables to simplify calculations or to adapt to specific coordinate systems. In double integration, it helps in transforming the region of integration, making it easier to evaluate the integral. In differentiation, substitution aids in applying the chain rule, allowing for the simplification of complex functions. Both processes are crucial for solving problems in calculus, providing clearer insights and more efficient computations.
  • #1
KungPeng Zhou
22
7
Homework Statement
\frac{d^{2}}{dx^{2}}\int_{0}^{x}(\int_{1}^{sint}\sqrt{1+u^{4}}du)dt
Relevant Equations
FTC1
\frac{d^{2}}{dx^{2}}\int_{0}^{x}(\int_{1}^{sint}\sqrt{1+u^{4}}du)dt=\frac{d}{dx}\int_{0}^{sinx}(\sqrt{1+u^{4}})du
then we let m=sinx,so x=arcsinx,then we get \frac{d}{dx}\int_{0}^{sinx}(\sqrt{1+u^{4}})du=\frac{dm}{dx}\frac{d}{dm}\int_{0}^{m}(\sqrt{1+u^{4}})du=\sqrt{1+m^{4}}\frac{dm}{dx},then we get the answer easily
Is this method correct?
 
Physics news on Phys.org
  • #2
I observe your math as below
***********
[tex]\frac{d^{2}}{dx^{2}}\int_{0}^{x}(\int_{1}^{sint}\sqrt{1+u^{4}}du)dt=\frac{d}{dx}\int_{0}^{sinx}(\sqrt{1+u^{4}})du[/tex]
then we let m=sinx,so x=arcsinx,then we get
[tex]\frac{d}{dx}\int_{0}^{sinx}(\sqrt{1+u^{4}})du=\frac{dm}{dx}\frac{d}{dm}\int_{0}^{m}(\sqrt{1+u^{4}})du=\sqrt{1+m^{4}}\frac{dm}{dx}[/tex]
,then we get the answer easily
Is this method correct?
************
Is that what you mean ? It seems OK.
 
  • #3
anuttarasammyak said:
I observe your math as below
***********
[tex]\frac{d^{2}}{dx^{2}}\int_{0}^{x}(\int_{1}^{sint}\sqrt{1+u^{4}}du)dt=\frac{d}{dx}\int_{0}^{sinx}(\sqrt{1+u^{4}})du[/tex]
then we let m=sinx,so x=arcsinx,then we get
[tex]\frac{d}{dx}\int_{0}^{sinx}(\sqrt{1+u^{4}})du=\frac{dm}{dx}\frac{d}{dm}\int_{0}^{m}(\sqrt{1+u^{4}})du=\sqrt{1+m^{4}}\frac{dm}{dx}[/tex]
,then we get the answer easily
Is this method correct?
************
Is that what you mean ? It seems OK.
Yes.Thank you
 
  • #4
What you posted:
KungPeng Zhou said:
Homework Statement: \frac{d^{2}}{dx^{2}}\int_{0}^{x}(\int_{1}^{sint}\sqrt{1+u^{4}}du)dt
Relevant Equations: FTC1

\frac{d^{2}}{dx^{2}}\int_{0}^{x}(\int_{1}^{sint}\sqrt{1+u^{4}}du)dt=\frac{d}{dx}\int_{0}^{sinx}(\sqrt{1+u^{4}})du
then we let m=sinx,so x=arcsinx,then we get \frac{d}{dx}\int_{0}^{sinx}(\sqrt{1+u^{4}})du=\frac{dm}{dx}\frac{d}{dm}\int_{0}^{m}(\sqrt{1+u^{4}})du=\sqrt{1+m^{4}}\frac{dm}{dx},then we get the answer easily
Is this method correct?
Same but using LaTeX:
Homework Statement: ##\frac{d^{2}}{dx^{2}}\int_{0}^{x}(\int_{1}^{\sin t}\sqrt{1+u^{4}}du)dt##
Relevant Equations: FTC1

##\frac{d^{2}}{dx^{2}}\int_{0}^{x}(\int_{1}^{\sin t}\sqrt{1+u^{4}}du)dt=\frac{d}{dx}\int_{0}^{\sin x}(\sqrt{1+u^{4}})du##
then we let ##m=\sin x##,so ##x=arcsin x##,then we get ##\frac{d}{dx}\int_{0}^{\sin x}(\sqrt{1+u^{4}})du=\frac{dm}{dx}\frac{d}{dm}\int_{0}^{m}
(\sqrt{1+u^{4}})du=\sqrt{1+m^{4}}\frac{dm}{dx}##,then we get the answer easily
Is this method correct?

Your LaTeX is pretty good, but you need to surround each equation with a pair of # characters (inline LaTeX) or a pair of $ characters (standalone LaTeX).
 
Back
Top