- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
Theorem: Let $u \in D'(\Omega)$ and $K \subset \Omega$, $K$ compact
$$\exists \lambda \in \mathbb{N} \text{ and } c \geq 0 \text{ such that } \\ |\langle u, \phi \rangle| \leq c \sum_{|a| \leq \lambda} ||\partial^{a} \phi||_{L^{\infty}}, \forall \phi \in C_C^{\infty}(K)$$
Proof
Suppose that it doesn't hold then for all $\lambda, c$ there will be a test function $\phi_{\lambda}$ such that
$1=|\langle u, \phi_{\lambda} \rangle|> \lambda \sum_{|a| \leq \lambda} ||\partial^{a} \phi_{\lambda}||_{L^{\infty}(\Omega)}$
We divide by $\lambda$, so:
$$||\phi_{\lambda}||_{\infty} \leq \sum_{|a| \leq \lambda} ||\partial^{a} \phi_{\lambda}||_{L^{\infty}(\Omega)} < \frac{1}{\lambda}$$
We send $\lambda \to +\infty$. So $\partial^{a} \phi_{\lambda} \to 0 \Rightarrow \langle u, \phi_{\lambda} \rangle \to 0$ from $(\star)$. And so we have a contradiction.
$u$: distribution
$(\star)$: $u(\phi_j) \to u(\phi)$ for each $\phi \in C_{C}^{\infty}(\Omega)$ for each sequence $\{ \phi_j\}$ with $\partial^a{\phi_j} \to \partial^a \phi$.First of all, why can we consider that there is a test function $\phi_{\lambda}$ such that $|\langle u, \phi_{\lambda} \rangle|=1$ ?
Then, how do we get that $||\phi_{\lambda}||_{\infty} \leq \sum_{|a| \leq \lambda} ||\partial^a \phi_{\lambda}||_{L^{\infty}(\Omega)}$ ?
Also how do we deduce from $(\star)$ that $\partial^a{\phi_{\lambda}} \to 0$ imples that $\langle u, \phi_{\lambda} \rangle \to 0$ ?
Theorem: Let $u \in D'(\Omega)$ and $K \subset \Omega$, $K$ compact
$$\exists \lambda \in \mathbb{N} \text{ and } c \geq 0 \text{ such that } \\ |\langle u, \phi \rangle| \leq c \sum_{|a| \leq \lambda} ||\partial^{a} \phi||_{L^{\infty}}, \forall \phi \in C_C^{\infty}(K)$$
Proof
Suppose that it doesn't hold then for all $\lambda, c$ there will be a test function $\phi_{\lambda}$ such that
$1=|\langle u, \phi_{\lambda} \rangle|> \lambda \sum_{|a| \leq \lambda} ||\partial^{a} \phi_{\lambda}||_{L^{\infty}(\Omega)}$
We divide by $\lambda$, so:
$$||\phi_{\lambda}||_{\infty} \leq \sum_{|a| \leq \lambda} ||\partial^{a} \phi_{\lambda}||_{L^{\infty}(\Omega)} < \frac{1}{\lambda}$$
We send $\lambda \to +\infty$. So $\partial^{a} \phi_{\lambda} \to 0 \Rightarrow \langle u, \phi_{\lambda} \rangle \to 0$ from $(\star)$. And so we have a contradiction.
$u$: distribution
$(\star)$: $u(\phi_j) \to u(\phi)$ for each $\phi \in C_{C}^{\infty}(\Omega)$ for each sequence $\{ \phi_j\}$ with $\partial^a{\phi_j} \to \partial^a \phi$.First of all, why can we consider that there is a test function $\phi_{\lambda}$ such that $|\langle u, \phi_{\lambda} \rangle|=1$ ?
Then, how do we get that $||\phi_{\lambda}||_{\infty} \leq \sum_{|a| \leq \lambda} ||\partial^a \phi_{\lambda}||_{L^{\infty}(\Omega)}$ ?
Also how do we deduce from $(\star)$ that $\partial^a{\phi_{\lambda}} \to 0$ imples that $\langle u, \phi_{\lambda} \rangle \to 0$ ?