- #1
Reshma
- 749
- 6
Show that for a single particle with constant mass the equation of motion implies the following differential equation for the kinetic energy:
[tex]{dT\over dt} = \vec F \cdot \vec v[/tex]
while if the mass varies with time the corresponding equation is
[tex]{d(mT)\over dt} = \vec F \cdot \vec p[/tex]
Proof:
I was able to prove the first part:
[tex]T = {1\over 2}mv^2[/tex]
[tex]{dT\over dt} = {1\over 2} {d(mv^2)\over dt} = \vec v \cdot m{d\vec v \over dt} = \vec F \cdot \vec v[/tex]
But I am unable to prove the second part. Please help.
[tex]{dT\over dt} = \vec F \cdot \vec v[/tex]
while if the mass varies with time the corresponding equation is
[tex]{d(mT)\over dt} = \vec F \cdot \vec p[/tex]
Proof:
I was able to prove the first part:
[tex]T = {1\over 2}mv^2[/tex]
[tex]{dT\over dt} = {1\over 2} {d(mv^2)\over dt} = \vec v \cdot m{d\vec v \over dt} = \vec F \cdot \vec v[/tex]
But I am unable to prove the second part. Please help.