- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hey! :)
Let $f,g: [a,b] \to \mathbb{R}$ integrable functions.Show that: $\int_{a}^{b}(f+g)=\int_{a}^{b}f+\int_{a}^{b}g$
We suppose the subdivision $P=\{a=t_0<t_1<...<t_n=b\}$ of $[a,b]$.
Let $t \in [t_k,t_{k+1}]$.
$$f(t) \leq sup f([t_k,t_{k+1}])$$
$$f(t) \geq inf f([t_k,t_{k+1}])$$
$$g(t) \leq sup g([t_k,t_{k+1}])$$
$$g(t) \geq inf g([t_k,t_{k+1}])$$
From these relations we get: $$u(f+g,P) \leq u(f,P)+u(g,P)$$
$$L(f+g,P) \geq L(f,P)+L(g,P)$$
where $L$ the lower sum and $U$ the upper sum.
As $f$ is integrable, $\forall \epsilon'>0 \exists P_1$ of $[a,b]$ such that $u(f,P_1)-L(f,P_1)<\epsilon'$.
As $g$ is integrable, $\forall \epsilon'>0 \exists P_2$ of $[a,b]$ such that $u(g,P_2)-L(g,P_2)<\epsilon'$.
We pick $P=P_1 \cup P_2$ and we get: $\int_{a}^{b}f+\int_{a}^{b}g< \epsilon + \underline{\int_{a}^{b}}(f+g)$
But why from this relation do we get: $\int_{a}^{b}f+\int_{a}^{b}g \leq \underline{\int_{a}^{b}}(f+g)$ ??
We also get: $\int_{a}^{b}f+\int_{a}^{b}g \geq \underline{\int_{a}^{b}}(f+g)- \epsilon$.And from this realtion,how do we get: $\int_{a}^{b}f+\int_{a}^{b}g \geq \underline{\int_{a}^{b}}(f+g)$ ? (Thinking)
Let $f,g: [a,b] \to \mathbb{R}$ integrable functions.Show that: $\int_{a}^{b}(f+g)=\int_{a}^{b}f+\int_{a}^{b}g$
We suppose the subdivision $P=\{a=t_0<t_1<...<t_n=b\}$ of $[a,b]$.
Let $t \in [t_k,t_{k+1}]$.
$$f(t) \leq sup f([t_k,t_{k+1}])$$
$$f(t) \geq inf f([t_k,t_{k+1}])$$
$$g(t) \leq sup g([t_k,t_{k+1}])$$
$$g(t) \geq inf g([t_k,t_{k+1}])$$
From these relations we get: $$u(f+g,P) \leq u(f,P)+u(g,P)$$
$$L(f+g,P) \geq L(f,P)+L(g,P)$$
where $L$ the lower sum and $U$ the upper sum.
As $f$ is integrable, $\forall \epsilon'>0 \exists P_1$ of $[a,b]$ such that $u(f,P_1)-L(f,P_1)<\epsilon'$.
As $g$ is integrable, $\forall \epsilon'>0 \exists P_2$ of $[a,b]$ such that $u(g,P_2)-L(g,P_2)<\epsilon'$.
We pick $P=P_1 \cup P_2$ and we get: $\int_{a}^{b}f+\int_{a}^{b}g< \epsilon + \underline{\int_{a}^{b}}(f+g)$
But why from this relation do we get: $\int_{a}^{b}f+\int_{a}^{b}g \leq \underline{\int_{a}^{b}}(f+g)$ ??
We also get: $\int_{a}^{b}f+\int_{a}^{b}g \geq \underline{\int_{a}^{b}}(f+g)- \epsilon$.And from this realtion,how do we get: $\int_{a}^{b}f+\int_{a}^{b}g \geq \underline{\int_{a}^{b}}(f+g)$ ? (Thinking)