- #1
mr.tea
- 102
- 12
Homework Statement
let ##g## be a ##C^1## function such that the two series ##\sum_{-\infty}^{\infty} g(x+2n\pi)## and ##\sum_{n=-\infty}^{\infty} g'(x+2n\pi)## are uniformly convergent in the interval ##0\leq x \leq 2\pi ##. Show the Poisson summation formula:
##\sum_{n=-\infty}^{\infty} g(2n\pi) = \sum_{-\infty}^{\infty} \gamma _m##
where ##\gamma _m= \frac{1}{2\pi} \int_{-\infty}^{\infty} g(x)e^{-imx} dx ## is assumed to be convergent.
Hint: The numbers ##\gamma _m## are the Fourier coefficients of the ##2\pi##-periodic function ## u(x)= \sum_{-\infty}^{\infty} g(x+2n\pi)##
Homework Equations
The Attempt at a Solution
I have tried to use the hint, but arrived nowhere. Also, I am not sure why do I need the differentiated series ##\sum_{-\infty}^{\infty} g'(x+2n\pi)## ...
Thank you.