- #1
John O' Meara
- 330
- 0
Show that [tex] tan^n(x) = tan^{n-2}(x)(sec^2(x)-1) \\[/tex]. Hence if [tex] I_n = \int_0^{\frac{\pi}{4}}tan^n(x)dx \\[/tex]. Prove that [tex] I_n = \frac{1}{n-1} - I_{n-2} \\[/tex], and evaluate [tex]I_5{/tex]
My effort:
[tex] I_n = \int_0^{n-2}tan^{n-2}x(sec^2x-1)dx \\[/tex] [tex] du = (n-2)tan^{n-3}x sec^2x dx \\[/tex], and [tex] v = \int(sec^2x - 1) dx = tanx -x \\ [/tex]. Therefore:
[tex] I_n = (tan^{n-2}x(tanx - x)) - (n-2)\int_0^{\frac{\pi}{4}}tan^{n-3}xsec^2x(tanx - x)dx \\ [/tex].
Which implies, [tex] I_n = (tan^{n-2}x(tanx - x) - (n-2)\int_0^{\frac{\pi}{4}}tan^{n-2}sec^2x dx - (n-2)\int tan^{n-3}x(sec^2x -1) dx \\[/tex]. Therefore that implies :[tex]
I_n = (tan^{n-1}x - tan^{n-2}(x) x) -(n-1)\int tan^{n-2}x(sec^2x -1)dx + (n-1)\int xtan^{n-3}x(sec^2x-1)dx \\[/tex]
The end result I get is : [tex] I_n = 1 - \frac{\pi}{4} - (n-1)I_n + (n-1)\int_0^{\frac{\pi}{4}}tan^{n-2}(x) x dx [/tex]. I must have gone wrong some where to get this result. Thanks for the help.
My effort:
[tex] I_n = \int_0^{n-2}tan^{n-2}x(sec^2x-1)dx \\[/tex] [tex] du = (n-2)tan^{n-3}x sec^2x dx \\[/tex], and [tex] v = \int(sec^2x - 1) dx = tanx -x \\ [/tex]. Therefore:
[tex] I_n = (tan^{n-2}x(tanx - x)) - (n-2)\int_0^{\frac{\pi}{4}}tan^{n-3}xsec^2x(tanx - x)dx \\ [/tex].
Which implies, [tex] I_n = (tan^{n-2}x(tanx - x) - (n-2)\int_0^{\frac{\pi}{4}}tan^{n-2}sec^2x dx - (n-2)\int tan^{n-3}x(sec^2x -1) dx \\[/tex]. Therefore that implies :[tex]
I_n = (tan^{n-1}x - tan^{n-2}(x) x) -(n-1)\int tan^{n-2}x(sec^2x -1)dx + (n-1)\int xtan^{n-3}x(sec^2x-1)dx \\[/tex]
The end result I get is : [tex] I_n = 1 - \frac{\pi}{4} - (n-1)I_n + (n-1)\int_0^{\frac{\pi}{4}}tan^{n-2}(x) x dx [/tex]. I must have gone wrong some where to get this result. Thanks for the help.
Last edited: