How Does the Sackur-Tetrode Equation Resolve the Gibbs Paradox?

  • Thread starter Kaguro
  • Start date
  • Tags
    deriving
In summary, the book claims that if you include the Gibbs' factor in the thermodynamic probability, then the entropy equation will look as if you used the Gibbs' factor in the partition function. This resolves the Gibb's paradox.
  • #1
Kaguro
221
57
Homework Statement
Derive the Sackur-Tetrode equation.
Relevant Equations
...
Okay so I am learning Statistical mechanics from an Indian book "Thermal Physics,kinetic theory and statistical mechanics by Garg, Bansal and Ghosh".

I have derived the MB distribution function, and have evaluated the parameters α and β. With its help I derived the expression for entropy:

##S=k_B N ln(Z) + \frac{U}{T}##
Then we assumed that particles of an ideal monoatomic gas are distinguishable and derived the expression for its partition function:

##Z= V^N (\frac{mk_B T}{2 \pi \hbar^2})^{3N/2}##

So entropy becomes:

## S=Nk_B ( ln(V T^{3/2} )+ ln( \frac{mk_B e}{2\pi \hbar^2} ) )##
which tends to negative infinity as T tends to 0.

Also it gives rise to the Gibb's paradox.

To resolve it, Sackur suggested that we're over counting the microstates. So divide the thermodynamic probability W by N!.
Now, ##S=k_B ln(W)##

So, in the expression for entropy, there is another term: ##-k_B ln(N!)##
Now, ##S=k_B (N ln(Z) - ln(N!)) + \frac{U}{T}##

At this point the book says: "With this we can conclude that Boltzmann counting influences the partition function in the same way as it does thermodynamic probability. So ## Z^C = \frac{Z}{N!}## " ( Zc is Z corrected.)

How does it conclude that!?

Before: ##S=k_B N ln(Z) + \frac{U}{T}##
After: ##S=k_B (N ln(Z) - ln(N!)) + \frac{U}{T}##

For new Z to be Z/N! , there should have been an N multiplied with the ln(N!) and I could take it common.
 
Physics news on Phys.org
  • #2
Kaguro said:
##S=k_B N ln(Z) + \frac{U}{T}##
Are you sure that the factor of ##N## should be there in the first term on the right side?
 
  • #3
Yes. Sorry there's so much that it'd take a lot of time to type it. Here's the derivation:

Screenshot from 2021-03-27 16-10-00.png

Screenshot from 2021-03-27 16-12-14.png


This is how to get the expression for entropy.
 
  • #4
The problem seems to be that in some of your equations, ##Z## represents the partition function of a single particle of the system, while in other equations ##Z## represents the partition function of the system of ##N## particles. If we let ##Z_1## denote the partition function of a single particle and ##Z_N## denote the partition function of the system, then for an ideal gas ##Z_N = Z_1^N## (without the Gibbs factor) and ##Z_N = Z_1^N/N!## (with the Gibbs factor.)

Note that if we are not including the Gibbs factor of ##1/N!##, then we have ##Nln(Z_1) = ln(Z_N)##.

When you wrote ##S=k_B N ln(Z) + \frac{U}{T}##, the ##Z## here should be ##Z_1##. This is before introducing the Gibbs factor. So, you can write this as

##S=k_B N ln(Z_1) + \frac{U}{T} = k_B ln(Z_N) + \frac{U}{T}##.When you wrote ##Z= V^N (\frac{mk_B T}{2 \pi \hbar^2})^{3N/2}##, the ##Z## here is ##Z_N##.

The Gibbs correction factor is introduced for ##Z_N##, not ##Z_1##. So, your equation ## Z^C = \large \frac{Z}{N!}## is actually ## Z_N^C = \large \frac{Z_N}{N!}##
 
  • Like
Likes vanhees71 and Kaguro
  • #5
So this was it!

I now used the modified total partition function (without N multiplied outside) and I can now see that using Gibbs' factor in the thermodynamic probability W will lead to the equation for entropy looking as if I used the Gibbs' factor in the partition function. This is what the book claimed!

After this part rest is easy, just put in the partition function for ideal gas( the composite one) and obtain the S-T equation. This contains a V/N part so when I mix two same gases at the same density, there is no change in entropy. So Gibbs' paradox is resolved!

Thank you very much!
 
  • Like
Likes TSny

FAQ: How Does the Sackur-Tetrode Equation Resolve the Gibbs Paradox?

What is the Sackur-Tetrode equation and why is it important in science?

The Sackur-Tetrode equation is a thermodynamic equation used to calculate the entropy of an ideal gas. It is important in science because it helps us understand the behavior of gases and their relationship to temperature, volume, and pressure.

Who developed the Sackur-Tetrode equation and when?

The equation was developed by German physicist Hugo Sackur and Russian physicist Yakov Frenkel Tetrode in the early 1900s.

What are the variables and constants used in the Sackur-Tetrode equation?

The variables used in the equation are temperature, volume, and number of moles. The constants used are the Boltzmann constant and Avogadro's number.

How is the Sackur-Tetrode equation derived?

The equation is derived using statistical mechanics principles and the ideal gas law. It involves calculating the number of microstates of a gas and then using that to calculate the entropy.

What are some applications of the Sackur-Tetrode equation?

The equation is commonly used in thermodynamics, statistical mechanics, and physical chemistry to calculate the entropy of gases. It also has applications in fields such as astrophysics and atmospheric science.

Back
Top