- #1
Physicsnb
- 21
- 1
- Homework Statement
- In a lecture of thermal stress my professor defined thermal strain as ' L α ΔT/ L = α ΔT ' [since strain= ΔL/L and ΔL after application of heat is L α ΔT].
He said that on a constrained body that's not allowed to expand , a force is applied on the body .
If the constraints were removed then the new length would be equal to ' L+ L α ΔT '
However while deriving the formula for thermal strain he used the length 'L' as original length .
My question is : "Shouldn't L(new) be used to derive the equation instead of length L , since the rod is compressed from this length by the walls/constraints not length L. "
- Relevant Equations
- ΔL= L α ΔT
ΔL = Change in length of the body
L= Original Length of the body
α= Thermal Coefficient og linear expansion
ΔT=Change in temperature
New length after change in temp, L(new) = L+L α ΔT
My attempt at deriving the equation:
Let a temperature a rod of length L constrained by walls on both ends be changed by ΔT.
So the change in lenghth of rod under no constraints = L α ΔT
Length of rod after change in temperature without walls =L+L α ΔT= L(1+L α ΔT)
However with constraints the rod is forced to length L
Then,
Thermal strain = ΔL/L(1+L α ΔT)
Thermal strain= L α ΔT/L(1+L α ΔT) = α ΔT/(1+L α ΔT)
Let a temperature a rod of length L constrained by walls on both ends be changed by ΔT.
So the change in lenghth of rod under no constraints = L α ΔT
Length of rod after change in temperature without walls =L+L α ΔT= L(1+L α ΔT)
However with constraints the rod is forced to length L
Then,
Thermal strain = ΔL/L(1+L α ΔT)
Thermal strain= L α ΔT/L(1+L α ΔT) = α ΔT/(1+L α ΔT)