- #1
karush
Gold Member
MHB
- 3,269
- 5
w,8.7.8 nmh{925}
$\displaystyle\int\frac{1}{\left(25-{t}^{2 }\right)^{3 /2 } }\ dt
=\frac{t}{25\sqrt{25-{t}^{2 }}}+C$
$\begin{align}\displaystyle
t& = {5\sin\left({u}\right)} &
dt&={5\cos\left({u}\right)} du&
\end{align}$
Then $ \displaystyle\int\dfrac{5\cos\left({u}\right)}
{\left(25-25\sin^2 \left({u}\right)\right)^{3 /2} }\ du$
?
Couldn't see the magic massage thing to avoid a trig substitution
$\displaystyle\int\frac{1}{\left(25-{t}^{2 }\right)^{3 /2 } }\ dt
=\frac{t}{25\sqrt{25-{t}^{2 }}}+C$
$\begin{align}\displaystyle
t& = {5\sin\left({u}\right)} &
dt&={5\cos\left({u}\right)} du&
\end{align}$
Then $ \displaystyle\int\dfrac{5\cos\left({u}\right)}
{\left(25-25\sin^2 \left({u}\right)\right)^{3 /2} }\ du$
?
Couldn't see the magic massage thing to avoid a trig substitution
Last edited: