- #1
kittensies
- 2
- 0
Homework Statement
f is a continuous periodic function on [tex]\mathbb{R}[/tex] with period 1, and [tex]{\xi_n}[/tex] is a equidistributed sequence on [0,1).
Also given is that [tex]$\int_0^1 f(x)dx=0$[/tex]
I need to prove that [tex]$\lim_{n\rightarrow \infty}\frac{1}{N}\sum_{n=1}^N f(x+\xi_n) = 0[/tex] uniformly in x.
Homework Equations
Weyl's criterion?
The Attempt at a Solution
Let f be a trig polynomial. Then [tex]\frac{1}{N}\sum_{n=1}^N f(x+\xi_n) = \frac{1}{N}\sum_{n=1}^N e^{2\pi in(x+\xi_n)} \leq \frac{1}{N}|\sum_{n=1}^N e^{2\pi in(x)}||\sum_{n=1}^N e^{2\pi in\xi_n)}|[/tex]
By Weyl's criterion, [tex]\frac{1}{N}|\sum_{n=1}^N e^{2\pi in\xi_n)}|\rightarrow 0[/tex] as N goes to $\infty$, and [tex]|\sum_{n=1}^N e^{2\pi in(x)}|[/tex] goes to 0 since [tex]\int_0^1 f(x)dx=0[/tex].
(This part above I'm not certain about -- can I just show that the two parts of something bigger absolutely converges to show that P converges?)
Then we can find a trig polynomial P such that [tex]sup |f(x)-P(x)|\leq\epsilon[/tex]
Then [tex]|\dfrac{1}{N}\sum_{n=1}^N P(x+\xi_n) - \int f(x)dx|=|\dfrac{1}{N}\sum_{n=1}^N P(x+\xi_n)|\leq[/tex]
[tex] \dfrac{1}{N}|\sum_{n=1}^N f(x+\xi_n) - P(x+\xi_n)|
+\dfrac{1}{N}|\sum_{n=1}^N P(x+\xi_n) - P(x)|
+\int_0^1 |f(x) - P(x)|\leq 3\epsilon[/tex]
Does this work? I'm not sure if the logic follows.