- #1
karush
Gold Member
MHB
- 3,269
- 5
the rides on a carousel are represented by $2$ circles with the same center with
$\displaystyle\omega=\frac{2.4 \text {rev}}{\text {min}}$
and the radius are:
$r_{13}=13 \text{ ft} 11 \text { in}= 167 \text { in}$
$r_{19}=19 \text{ ft} 3 \text { in}= 231 \text { in}$
find:
$\displaystyle\frac{\text {mi}}{\text {hr}}$ of $r_1$ and $r_2$
$\displaystyle v_{r13} =
167\text { in}
\cdot\frac{2.4 \text { rev}}{\text {min}}
\cdot\frac{2 \pi}{\text {rev}}
\cdot\frac{\text {ft}}{12\text { in}}
\cdot\frac{\text {mi}}{5280\text { ft}}
\cdot\frac{60 \text{ min}}{\text {hr}}
\approx
2.4\frac{\text{ mi}}{\text {hr}}
$
thus using the same $\displaystyle v_{r19}=3.3\frac{\text{ mi}}{\text {hr}}$
these ans seem reasonable but my question is on the
$\displaystyle\frac{2 \pi}{\text {rev}}$
isn't $\text {rev}$ really to the circumference of the circle
how ever if used the ans are way to large.
not sure why the $2\pi$ works.
$\displaystyle\omega=\frac{2.4 \text {rev}}{\text {min}}$
and the radius are:
$r_{13}=13 \text{ ft} 11 \text { in}= 167 \text { in}$
$r_{19}=19 \text{ ft} 3 \text { in}= 231 \text { in}$
find:
$\displaystyle\frac{\text {mi}}{\text {hr}}$ of $r_1$ and $r_2$
$\displaystyle v_{r13} =
167\text { in}
\cdot\frac{2.4 \text { rev}}{\text {min}}
\cdot\frac{2 \pi}{\text {rev}}
\cdot\frac{\text {ft}}{12\text { in}}
\cdot\frac{\text {mi}}{5280\text { ft}}
\cdot\frac{60 \text{ min}}{\text {hr}}
\approx
2.4\frac{\text{ mi}}{\text {hr}}
$
thus using the same $\displaystyle v_{r19}=3.3\frac{\text{ mi}}{\text {hr}}$
these ans seem reasonable but my question is on the
$\displaystyle\frac{2 \pi}{\text {rev}}$
isn't $\text {rev}$ really to the circumference of the circle
how ever if used the ans are way to large.
not sure why the $2\pi$ works.