- #1
Vladimir_Kitanov
- 44
- 14
- Homework Statement
- On picture
- Relevant Equations
- ##\theta = \theta_0 + \omega _0 t + \frac {1}{2} \alpha t^2##
##\omega = \omega_0 + \alpha t##
##\omega^2 = \omega_0^2 + 2 \alpha (\theta - \theta_0)##
##a_t = \alpha * r##
##a_n = \omega^2 * r##
Answer should be (c) 32,7 ##\frac{m}{s^2}##
My attempt:
##\omega_{2\pi}## -> ##\omega## after 1 revolution
##\omega_{2\pi} = 0,2 * (2\pi)^2##
##\omega_{2\pi} = 7,9 \frac{rad}{s}##
##\frac {d}{dt}\omega = \alpha = 0,2*2*\theta##
##\alpha_{2\pi}## -> ##\alpha## after 1 revolution
##\alpha_{2\pi} = 2,51 \frac {rad}{s}##
##a_n## -> normal acceleration
##a_t## -> tangential acceleration
##a_t = \alpha_{2\pi} * r = 1,26 \frac {m}{s^2}##
##a_n = \omega^2 * r = 32,205 \frac {m}{s^2}##
##a = \sqrt{a_n^2 + a_t^2} = 31,2 \frac{m}{s^2}##