- #1
phoesix
- 2
- 1
I don't know if this is a dumb question, but I just can't seem to wrap my head around it.
I can imagine and feel when I'm pressing against a wall, that there's a force. Especially when the wall is not moving, I can continually increase the strength of my push and feel a greater resistance from the wall.
Same thing with hydraulic presses. When it's crushing something very hard, you can see the force increasing on the gauge.
My confusion involves scenarios when there's little to no resistance involved. Hypothetically, say in the wall example, I can push with 100Nm of force with my arm muscles. With no wall, can I also "push" against empty space in front of me with 100Nm of force? (Let's ignore air resistance or anything like that)
Or in the hydraulic press, say that it's pressing with 100Nm of force against an object that hasn't broken yet. But the second it breaks, you can see on the gauge that the force decreases suddenly. Why isn't the press pressing with 100Nm of force after the object breaks just like it was before it broke?
Or in a gear mesh example, I know that when the tooth of a driving gear applies a force of 100Nm on the tooth of the driven gear, the driven gear also applies 100Nm of force back. But in my mind, assuming there's no friction while rotating, if there's no counter resistance on the driven gear and the driven gear is able to just freely rotate with no resistance or load, I don't see how the driving gear can apply 100Nm of force. If the driving gear wants to increase force, I feel like it will only end up spinning faster, while the force is still nonexistent. Once there's some load on the driven gear, then maybe that's when the driving gear can apply 100Nm of force.
It seems like whenever there's no resistance, whether it's a wall that will immediately collapse when I push it, or an object that breaks under a hydraulic press, or a gear that has no load on it, if you try to apply force in these situations, the force somehow "melts" away because nothing opposes what's being applied. If I try to apply 100Nm of force on one end of a seesaw while the other end has nothing, I feel like I won't be able to apply 100Nm of force in the first place.
In one final scenario I was imagining, I'm poking the empty air in front of me (again ignore actual air molecules creating friction). The way I think of this is, if I'm moving my finger forward slowly, I'm applying only a little bit of force. So then to try to increase force, I feel like I have to lunge my finger forward faster. (Kind of like in the gear example above, the gears just spin faster with no load)
I'm trying to contrast this to a situation where my finger can poke a stationary object, because it's very easy to see and feel force. I can just keep pressing harder with my finger to increase the force or let go of my muscle strain to decrease the force. But in the above situation where it's just the air, I can't seem to understand where the force is and how it's regulated, or if there even is any force to begin with. So is force only possible when there is something to oppose? Does an object that has kinetic energy but does not collide or press against anything as it's moving in a straight line not have any force?
I'm not sure if any of this makes any sense, but please let me know how I can clarify my confusion any further. Thanks in advance!
I can imagine and feel when I'm pressing against a wall, that there's a force. Especially when the wall is not moving, I can continually increase the strength of my push and feel a greater resistance from the wall.
Same thing with hydraulic presses. When it's crushing something very hard, you can see the force increasing on the gauge.
My confusion involves scenarios when there's little to no resistance involved. Hypothetically, say in the wall example, I can push with 100Nm of force with my arm muscles. With no wall, can I also "push" against empty space in front of me with 100Nm of force? (Let's ignore air resistance or anything like that)
Or in the hydraulic press, say that it's pressing with 100Nm of force against an object that hasn't broken yet. But the second it breaks, you can see on the gauge that the force decreases suddenly. Why isn't the press pressing with 100Nm of force after the object breaks just like it was before it broke?
Or in a gear mesh example, I know that when the tooth of a driving gear applies a force of 100Nm on the tooth of the driven gear, the driven gear also applies 100Nm of force back. But in my mind, assuming there's no friction while rotating, if there's no counter resistance on the driven gear and the driven gear is able to just freely rotate with no resistance or load, I don't see how the driving gear can apply 100Nm of force. If the driving gear wants to increase force, I feel like it will only end up spinning faster, while the force is still nonexistent. Once there's some load on the driven gear, then maybe that's when the driving gear can apply 100Nm of force.
It seems like whenever there's no resistance, whether it's a wall that will immediately collapse when I push it, or an object that breaks under a hydraulic press, or a gear that has no load on it, if you try to apply force in these situations, the force somehow "melts" away because nothing opposes what's being applied. If I try to apply 100Nm of force on one end of a seesaw while the other end has nothing, I feel like I won't be able to apply 100Nm of force in the first place.
In one final scenario I was imagining, I'm poking the empty air in front of me (again ignore actual air molecules creating friction). The way I think of this is, if I'm moving my finger forward slowly, I'm applying only a little bit of force. So then to try to increase force, I feel like I have to lunge my finger forward faster. (Kind of like in the gear example above, the gears just spin faster with no load)
I'm trying to contrast this to a situation where my finger can poke a stationary object, because it's very easy to see and feel force. I can just keep pressing harder with my finger to increase the force or let go of my muscle strain to decrease the force. But in the above situation where it's just the air, I can't seem to understand where the force is and how it's regulated, or if there even is any force to begin with. So is force only possible when there is something to oppose? Does an object that has kinetic energy but does not collide or press against anything as it's moving in a straight line not have any force?
I'm not sure if any of this makes any sense, but please let me know how I can clarify my confusion any further. Thanks in advance!