- #1
karush
Gold Member
MHB
- 3,269
- 5
$\Large {S6-7.1.24}$
$$
\displaystyle
I=\int_{0}^{\pi} {x}^{3}\cos\left({x}\right)\,dx=12-3{\pi}^{2} \\
\begin{align}
u& = {{x}^{3}} & dv&=\cos\left({x}\right) \, dx \\
du&={3x^2} \ d{x}& v&={\sin\left({x}\right)}
\end{align} \\
$$
$$
\text{IBP} \displaystyle =uv-\int v\ du \\
\displaystyle{x}^{3}\cdot \sin\left({x}\right)
-\int \sin\left({x}\right) \cdot 3{x}^{2} \ d{x} \\
\begin{align}
u& = {{3x}^{2}} & dv&=\sin\left({x}\right) \, dx \\
du&={6x} \ d{x}& v&={-\cos\left({x}\right)}
\end{align} \\
$$
$$
\displaystyle -3{x}^{2}\cdot \cos\left({x}\right)
+6\int \cos\left({x}\right) \cdot {x} \ d{x} \\
\begin{align}
u& = {x} & dv&=\cos\left({x}\right) \, dx \\
du&={dx} \ d{x}& v&={\sin\left({x}\right)}
\end{align}
$$
$
\text{continued with this one more IBP but didn't get the answer}
$
$$
\displaystyle
I=\int_{0}^{\pi} {x}^{3}\cos\left({x}\right)\,dx=12-3{\pi}^{2} \\
\begin{align}
u& = {{x}^{3}} & dv&=\cos\left({x}\right) \, dx \\
du&={3x^2} \ d{x}& v&={\sin\left({x}\right)}
\end{align} \\
$$
$$
\text{IBP} \displaystyle =uv-\int v\ du \\
\displaystyle{x}^{3}\cdot \sin\left({x}\right)
-\int \sin\left({x}\right) \cdot 3{x}^{2} \ d{x} \\
\begin{align}
u& = {{3x}^{2}} & dv&=\sin\left({x}\right) \, dx \\
du&={6x} \ d{x}& v&={-\cos\left({x}\right)}
\end{align} \\
$$
$$
\displaystyle -3{x}^{2}\cdot \cos\left({x}\right)
+6\int \cos\left({x}\right) \cdot {x} \ d{x} \\
\begin{align}
u& = {x} & dv&=\cos\left({x}\right) \, dx \\
du&={dx} \ d{x}& v&={\sin\left({x}\right)}
\end{align}
$$
$
\text{continued with this one more IBP but didn't get the answer}
$
Last edited: