- #1
dRic2
Gold Member
- 890
- 225
Homework Statement
Show that the neutron density distribution function at any point in a monodirectional beam of monoenergetic neutrons moving along the x-axis is given by
$$n(x, \mathbf \omega) = \frac n {\pi} \delta( \mu -1)$$
where ##n## is the neutron density, ##\delta( \mu -1)## is the Dirac delta function, and ##\mu## is the cosine of the angle between ##\mathbf \omega## and the x-axis.
Homework Equations
##\int_{\Omega} n(x, \mathbf \omega) d \Omega = n##
The Attempt at a Solution
I simply checked that integrating over the solid angle gives the total neutron density:
$$\int_{\Omega} \frac n {\pi} \delta( cos \theta -1) sin \theta d \theta d \phi $$
## \mu = cos \theta \rightarrow d \mu = -sin\theta d \theta## and by the properties of Dirac's delta function the above integral reduces to
$$\frac n {\pi} \frac 1 2 2 \pi = n$$
I think this is a valid proof, but I'm not very sure how to "derive" the expression in the first place. For example: why the Dirac's delta function is expressed in terms of ##cos \theta## instead of just ## \theta## ?
Thanks
Ric
Last edited: