- #1
mlowery
- 23
- 0
Here is the question:
A parallel-plate capacitor is made of two circular plates, each with a diameter of .0025m. The plates of this capacitor are separated by a space of .00014m. What is the potential difference between a point midway between the plates and a point that is .00011m from one of the plates?
Here is the answer:
[tex] \Delta V = 3.4 * 10^{-2} V [/tex]
--------------------------------------
I know the potential difference between two points is given by:
[tex] \delta V= \frac {\Delta PE} {q}= -E \Delta d[/tex]
I also know:
[tex] \delta PE = -qE \Delta d = k_{c} \frac {q_{1} q_{2} } {r}[/tex]
Somewhere, I am not seeing how the components fit together. Also, I am having trouble because the charges of each point are not given. Can I assume them to be equal?
A parallel-plate capacitor is made of two circular plates, each with a diameter of .0025m. The plates of this capacitor are separated by a space of .00014m. What is the potential difference between a point midway between the plates and a point that is .00011m from one of the plates?
Here is the answer:
[tex] \Delta V = 3.4 * 10^{-2} V [/tex]
--------------------------------------
I know the potential difference between two points is given by:
[tex] \delta V= \frac {\Delta PE} {q}= -E \Delta d[/tex]
I also know:
[tex] \delta PE = -qE \Delta d = k_{c} \frac {q_{1} q_{2} } {r}[/tex]
Somewhere, I am not seeing how the components fit together. Also, I am having trouble because the charges of each point are not given. Can I assume them to be equal?
Last edited by a moderator: