- #1
amjad-sh
- 246
- 13
I have read in the internet that "One naturally derive the dirac equation when starting from the relativistic expression of kinetic energy:
##\mathbf H^2=c^2\mathbf P^2 +m^2c^4## where ##\mathbf P## is the canonical momentum.
Inclusion of electric and magnetic potentials ##\phi## and ##A## by substituting ##\mathbf P -εA##in ##\mathbf P## and ##\mathbf H -ε\phi## in ##\mathbf H## we get ##(\mathbf H -ε\phi)^2=(c\mathbf P -εA)^2+m^2c^4##
1-My first question is: Why potential and electric potentials are included in that way, I mean ##\mathbf P -εA##in ##\mathbf P## and ##\mathbf H -ε\phi## in ##\mathbf H##?
Then the text I am reading continued to the part where he stated the dirac equation which is:
##(\mathbf H-c\sum_{\mu}p_{\mu}-\beta mc^2)\psi=0##
Now with the fact that## [\mathbf H -ε\phi -cα.(\mathbf p -ε/c\mathbf A) -\beta mc^2][\mathbf H -ε\phi +cα.(\mathbf p -ε/c\mathbf A) +\beta mc^2]\psi=0##
Using the approximation that the kinetic and the potential energies are small compared to mc^2, two components of the spin function can be neglected and the equation above take the form :
##[1/2m(\mathbf p -ε/c\mathbf A)^2 +ε\phi -(ε\hbar/2mc)\sigma \cdot \mathbf B -(ε\hbar/4m^2c^2)\mathbf E \cdot \mathbf p -(ε\hbar/4m^2c^2)σ \cdot (\mathbf E \times \mathbf p)]\psi=W\psi##
Where W +mc^2 is the total energy.
2-My second question is how we can reach the second formula, If somebody can give me some hints?
##\mathbf H^2=c^2\mathbf P^2 +m^2c^4## where ##\mathbf P## is the canonical momentum.
Inclusion of electric and magnetic potentials ##\phi## and ##A## by substituting ##\mathbf P -εA##in ##\mathbf P## and ##\mathbf H -ε\phi## in ##\mathbf H## we get ##(\mathbf H -ε\phi)^2=(c\mathbf P -εA)^2+m^2c^4##
1-My first question is: Why potential and electric potentials are included in that way, I mean ##\mathbf P -εA##in ##\mathbf P## and ##\mathbf H -ε\phi## in ##\mathbf H##?
Then the text I am reading continued to the part where he stated the dirac equation which is:
##(\mathbf H-c\sum_{\mu}p_{\mu}-\beta mc^2)\psi=0##
Now with the fact that## [\mathbf H -ε\phi -cα.(\mathbf p -ε/c\mathbf A) -\beta mc^2][\mathbf H -ε\phi +cα.(\mathbf p -ε/c\mathbf A) +\beta mc^2]\psi=0##
Using the approximation that the kinetic and the potential energies are small compared to mc^2, two components of the spin function can be neglected and the equation above take the form :
##[1/2m(\mathbf p -ε/c\mathbf A)^2 +ε\phi -(ε\hbar/2mc)\sigma \cdot \mathbf B -(ε\hbar/4m^2c^2)\mathbf E \cdot \mathbf p -(ε\hbar/4m^2c^2)σ \cdot (\mathbf E \times \mathbf p)]\psi=W\psi##
Where W +mc^2 is the total energy.
2-My second question is how we can reach the second formula, If somebody can give me some hints?