MHB How is the Domain of a Trigonometric Expression Determined?

AI Thread Summary
The discussion focuses on determining the domain of the expression $$\sqrt{a^2 - x^2}$$ using trigonometric substitution with $$x = a \sin \theta$$. It clarifies that for the substitution to be valid, the angle $$\theta$$ must be restricted to the interval $$-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$$, which corresponds to the range of the arcsine function. The simplification to $$a \cos \theta$$ assumes that $$\cos \theta$$ is non-negative, but it is noted that $$|a \cos \theta|$$ should be used to account for cases where $$\cos \theta$$ could be negative. Additionally, the assumption that $$a \ge 0$$ is highlighted as necessary for the expression to be properly defined. Understanding these conditions is essential for accurately determining the domain of the trigonometric expression.
tmt1
Messages
230
Reaction score
0
I have the expression

$$\sqrt{ a ^2 - x^2}$$

using trig substitution (with $x = asin\theta$), I get$$\sqrt{ a ^2 - a^2sin^2\theta}$$

which gets simplified to

$ a \sqrt{ cos^2\theta}$ and then $ a cos \theta$

for $$- \frac{\pi}{2} \le 0 \le \frac{\pi}{2} $$

what I don't get is domain of the expression. I understand that $ cos \theta$ must be greater than 0 because of $ a \sqrt{ cos^2\theta}$, but how does that get simplified to $- \frac{\pi}{2} \le 0 \le \frac{\pi}{2} $?

Thanks
 
Last edited:
Mathematics news on Phys.org
Hi tmt! ;)

tmt said:
I have the expression

$$\sqrt{ a ^2 - x^2}$$

using trig substitution (with $x = asin\theta$), I get

For $x = a\sin\theta$ to be properly defined (bijective), we need to restrict the domain of $\theta$.
Without loss of generality, we can choose $- \frac{\pi}{2} \le 0 \le \frac{\pi}{2} $, which is the domain of $\arcsin$.

$$\sqrt{ a ^2 - a^2sin^2\theta}$$

which gets simplified to

$ a \sqrt{ cos^2\theta}$ and then $ a cos \theta$

for $$- \frac{\pi}{2} \le 0 \le \frac{\pi}{2} $$

what I don't get is domain of the expression. I understand that $ cos \theta$ must be greater than 0 because of $ a \sqrt{ cos^2\theta}$, but how does that get simplified to $- \frac{\pi}{2} \le 0 \le \frac{\pi}{2} $?

Actually, we can't tell if $\cos \theta$ is greater than 0 or not.
We should consider the case that it's not.
Btw, there's also an assumption in there that $a \ge 0$.
Is that given?

Properly we have:
$$\sqrt{ a ^2 - a^2\sin^2\theta}
= \sqrt{a^2(1-\sin^2\theta)}
= \sqrt{a^2 \cos^2\theta}
= |a \cos\theta|
$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top