- #1
skate_nerd
- 176
- 0
I've got this funny looking problem for calculus II due tomorrow that I've been stumped on all week. It comes with three parts, and starts by stating:
Define for any \(r\geq0\) (real):
\(\Gamma(r)=\int_{0}^{\infty}{x^r}{e^{-x}}\,dx\)
a. Show that \(\Gamma(0)=1\)
This one was relatively easy. Just plugged in 0 to the r in the integral and got the answer 1.
b. Show that for any \(r\geq0\):
\(\Gamma(r+1)=(r+1)\Gamma(r)\)
When I tried solving for this all I seemed to be able to figure out was to plug the integral that is equal to \(\Gamma(r)\) into the right side of the equation, but from there I really just have no idea what to do with the \(\Gamma(r+1)\).
and if we can get there...
c. Conclude that for any \(n\in N\) (real):
\(\Gamma(n)=n!\)
I feel like solving b might give insight to this problem, but right now all I can say is that I have no idea how a third variable "n" just came into this problem.
Define for any \(r\geq0\) (real):
\(\Gamma(r)=\int_{0}^{\infty}{x^r}{e^{-x}}\,dx\)
a. Show that \(\Gamma(0)=1\)
This one was relatively easy. Just plugged in 0 to the r in the integral and got the answer 1.
b. Show that for any \(r\geq0\):
\(\Gamma(r+1)=(r+1)\Gamma(r)\)
When I tried solving for this all I seemed to be able to figure out was to plug the integral that is equal to \(\Gamma(r)\) into the right side of the equation, but from there I really just have no idea what to do with the \(\Gamma(r+1)\).
and if we can get there...
c. Conclude that for any \(n\in N\) (real):
\(\Gamma(n)=n!\)
I feel like solving b might give insight to this problem, but right now all I can say is that I have no idea how a third variable "n" just came into this problem.