- #1
karush
Gold Member
MHB
- 3,269
- 5
View attachment 1143
(a)
if $r=6$ and $\displaystyle \pmatrix { 6 \\ 0 } $ then $A$ is $6$ from $0,0$ on the $x$ axis
and if $\displaystyle \pmatrix { -6 \\ 0 }$ then $B$ is $-6$ from $0,0$ on the $x$ axis
and if $\displaystyle \pmatrix { 5 \\ \sqrt{11} }$ implies $\sqrt{5^2 + 11}=6 = OC$
(b) I presume $\vec{AC}$ can be from origin so
$\displaystyle \vec{OC}-{OA} = \vec{AC} = \pmatrix{-1 \\ \sqrt{11}}$
(c) $\displaystyle\frac{\vec{OA}\cdot\vec{OC}}{||OA||\ ||OC||}
=\frac{30}{36}=\frac{5}{6}
$
(d) area is just $\frac{5}{2}\sqrt{11}$
(a)
if $r=6$ and $\displaystyle \pmatrix { 6 \\ 0 } $ then $A$ is $6$ from $0,0$ on the $x$ axis
and if $\displaystyle \pmatrix { -6 \\ 0 }$ then $B$ is $-6$ from $0,0$ on the $x$ axis
and if $\displaystyle \pmatrix { 5 \\ \sqrt{11} }$ implies $\sqrt{5^2 + 11}=6 = OC$
(b) I presume $\vec{AC}$ can be from origin so
$\displaystyle \vec{OC}-{OA} = \vec{AC} = \pmatrix{-1 \\ \sqrt{11}}$
(c) $\displaystyle\frac{\vec{OA}\cdot\vec{OC}}{||OA||\ ||OC||}
=\frac{30}{36}=\frac{5}{6}
$
(d) area is just $\frac{5}{2}\sqrt{11}$
Last edited: