- #1
phospho
- 251
- 0
prove [itex] |a+b| \leq |a| + |b| [/itex]
i've proved it considering all the 4 cases for a and b but the book went about it a different way:
[itex] (|a+b|)^2 = (a+b)^2 = a^2 + 2ab + b^2 [/itex]
[itex] \leq a^2 + 2|a||b| + b^2 [/itex]
[itex] = |a|^2 + 2|a||b| + |b|^2 [/itex]
[itex] = (|a|+|b|)^2 [/itex]
it then goes on the conclude that [itex] |a+b| \leq |a| + |b| [/itex] because [itex] x^2 \leq y^2 [/itex] implies [itex] x < y [/itex]
I don't get there the [itex] \leq [/itex] comes from... nor the conclusion
i've proved it considering all the 4 cases for a and b but the book went about it a different way:
[itex] (|a+b|)^2 = (a+b)^2 = a^2 + 2ab + b^2 [/itex]
[itex] \leq a^2 + 2|a||b| + b^2 [/itex]
[itex] = |a|^2 + 2|a||b| + |b|^2 [/itex]
[itex] = (|a|+|b|)^2 [/itex]
it then goes on the conclude that [itex] |a+b| \leq |a| + |b| [/itex] because [itex] x^2 \leq y^2 [/itex] implies [itex] x < y [/itex]
I don't get there the [itex] \leq [/itex] comes from... nor the conclusion