How Is the Integral of sqrt(y^2-16)/y Solved Using Trigonometric Substitution?

  • MHB
  • Thread starter karush
  • Start date
In summary, the conversation discussed the integral $\displaystyle I_{31}=\int \frac{\sqrt{y^2-16}}{y} \, dy$, with the answer provided by maxima as $I_{31}=4\arcsin \left[\frac{4}{y}\right]+\sqrt{y^2-16}+C$. The conversation also mentioned using trigonometric substitution and an identity to simplify the integral. A suggested manipulation of the integrand was also provided to make the substitutions more apparent.
  • #1
karush
Gold Member
MHB
3,269
5
206.8.4.31
Given (answer by maxima)
$$\displaystyle
I_{31}=\int \frac{\sqrt{y^2-16}}{y} \, dy =
4\arcsin\left(\dfrac{4}{\left|y\right|}\right)+\sqrt{y^2-16}+C
$$
trig subst
$$y=4\tan\left({\theta}\right)
\therefore dy=4\sec^2 (\theta)d\theta$$
so
$$\displaystyle I_{31}=4\int\frac{\sec^3(\theta)}{\tan\left({\theta}\right)}\,d\theta$$

kinda ?
 
Physics news on Phys.org
  • #2
It seems you are implying that:

\(\displaystyle \sec^2(\alpha)=\tan^2(\alpha)-1\)

and that's not an identity. :D
 
  • #3
206.8.4.31
Given (answer by maxima)
$$\displaystyle
I_{31}=\int \frac{\sqrt{y^2-16}}{y} \, dy =
4\arcsin\left(\dfrac{4}{\left|y\right|}\right)+\sqrt{y^2-16}+C
$$
trig substitution use identity $\tan^2\theta = \sec^2\theta - 1 $
$$y=4\sec\left({\theta}\right)
\therefore dy=4\sin\theta\sec^2 (\theta) \, d\theta \\
\displaystyle\theta=\sec^{-1}\left(\frac{y}{4}\right)$$
so
$$\displaystyle
I_{31}=\int\frac{\sqrt{16 \sec^2{\theta}-16}}{4\sec\theta}4\sin\theta\sec^2\theta \,d\theta
=4\int\tan^2\left({\theta}\right) \, d\theta$$

so far ?
 
Last edited:
  • #4
Looks good so far...:D
 
  • #5
206.8.4.31
Given (answer by maxima)
$$\displaystyle
I_{31}=\int \frac{\sqrt{y^2-16}}{y} \, dy =
4\arcsin\left(\dfrac{4}{\left|y\right|}\right)+\sqrt{y^2-16}+C
$$
identity
$\tan^2\theta = \sec^2\theta - 1 $
$$y=4\sec\left({\theta}\right)
\therefore dy=4\sin\theta\sec^2 (\theta) \, d\theta \\
\displaystyle\theta=\sec^{-1}\left(\frac{y}{4}\right)$$
so
$$\displaystyle
I_{31}=\int\frac{\sqrt{16 \sec^2{\theta}-16}}{4\sec\theta}4\sin\theta\sec^2\theta \,d\theta
=4\int\tan^2\left({\theta}\right) \, d\theta$$
$$=\frac{-4
\left[\theta \cos\left({\theta}\right)-\sin\left({\theta}\right)
\right]}
{\cos\left({\theta}\right)}
=-4\theta +\tan\left({\theta}\right)+C $$
back subst $\theta=
\displaystyle\theta=\sec^{-1}\left(\frac{y}{4}\right)$

$$I_{31}=-4\arccos\left[\frac{4}{y}\right]+\sqrt{y^2-16}+C$$

Got a sign and arcsin vs arccos ?
 
  • #6
Hint: Consider the following identity:

\(\displaystyle \arccos(u)+\arcsin(u)=\frac{\pi}{2}\)
 
  • #7
$\tiny{206.8.4.31} \\
\text{Given (answer by maxima)}$
$$\displaystyle
I_{31}=\int \frac{\sqrt{y^2-16}}{y} \, dy =
4\arcsin\left(\dfrac{4}{\left|y\right|}\right)+\sqrt{y^2-16}+C
$$
$\text{identity }
\displaystyle\tan^2\theta = \sec^2\theta - 1 $
$$\displaystyle y=4\sec\left({\theta}\right)
\therefore dy=4\sin\theta\sec^2 (\theta) \, d\theta \\
\displaystyle\theta=\sec^{-1}\left(\frac{y}{4}\right)$$
$\text{substitute}$
$$\displaystyle
I_{31}=\int\frac{\sqrt{16 \sec^2{\theta}-16}}{4\sec\theta}4\sin\theta\sec^2\theta \,d\theta
=4\int\tan^2\left({\theta}\right) \, d\theta$$
$$=\frac{-4
\left[\theta \cos\left({\theta}\right)-\sin\left({\theta}\right)
\right]}
{\cos\left({\theta}\right)}
=-4\theta +\tan\left({\theta}\right)+C $$
$\text{back substitute }
\displaystyle \theta=\sec^{-1}\left(\frac{y}{4}\right)$
$$I_{31}=4\arcsin \left[\frac{4}{y}\right]+\sqrt{y^2-16}+C$$
☕
 
Last edited:
  • #8
MarkFL said:
Hint: Consider the following identity:

\(\displaystyle \arccos(u)+\arcsin(u)=\frac{\pi}{2}\)

That helped. 😎😎
 
  • #9
karush said:
206.8.4.31
Given (answer by maxima)
$$\displaystyle
I_{31}=\int \frac{\sqrt{y^2-16}}{y} \, dy =
4\arcsin\left(\dfrac{4}{\left|y\right|}\right)+\sqrt{y^2-16}+C
$$
trig subst
$$y=4\tan\left({\theta}\right)
\therefore dy=4\sec^2 (\theta)d\theta$$
so
$$\displaystyle I_{31}=4\int\frac{\sec^3(\theta)}{\tan\left({\theta}\right)}\,d\theta$$

kinda ?

I would have made some manipulation to the integrand first to make the substitutions a little more obvious...

$\displaystyle \begin{align*} \int{ \frac{\sqrt{y^2 - 16}}{y}\,\mathrm{d}y} &= \int{ \frac{\left( \sqrt{y^2 - 16} \right) ^2}{y\,\sqrt{y^2 - 16}}\,\mathrm{d}y } \\ &= \int{ \frac{\left( \sqrt{y^2 - 16} \right) ^2 }{y^2} \left( \frac{y}{\sqrt{y^2 - 16}} \right) \,\mathrm{d}y } \end{align*}$

Now let $\displaystyle \begin{align*} u = \sqrt{y^2 - 16} \implies \mathrm{d}u = \frac{y}{\sqrt{y^2 - 16}}\,\mathrm{d}y \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \int{ \frac{\left( \sqrt{y^2 - 16} \right) ^2}{y^2}\left( \frac{y}{\sqrt{y^2 - 16}} \right)\,\mathrm{d}y } &= \int{ \frac{u^2}{u^2 + 16}\,\mathrm{d}u } \\ &= \int{ \left( 1 - \frac{16}{u^2 + 16} \right) \,\mathrm{d}u } \\ &= \int{1\,\mathrm{d}u} - \int{ \frac{16}{u^2 + 16}\,\mathrm{d}u } \end{align*}$

and I'm sure you can continue from here...
 

Related to How Is the Integral of sqrt(y^2-16)/y Solved Using Trigonometric Substitution?

1. What is the function of "206.8.4.31" in the equation?

The number "206.8.4.31" is not a part of the equation. It is most likely an IP address or some other identifier used for tracking purposes.

2. What does "int" stand for in the equation?

"int" stands for "integer" and it indicates that the result of the equation should be a whole number, rather than a decimal or fraction.

3. What does "sqrt" mean in the equation?

"sqrt" stands for "square root" and it is a mathematical function that calculates the square root of a given number.

4. What is the significance of "y" in the equation?

"y" is a variable that represents a number or value that can change. In this equation, it represents the input number for which we are trying to calculate the square root of (y^2-16)/y.

5. How do you solve this equation?

To solve this equation, you would first substitute a value for "y". Then, you would calculate the square root of (y^2-16)/y and make sure the result is a whole number. If it is not a whole number, you would try a different value for "y" until you find one that gives a whole number result.

Similar threads

Replies
3
Views
2K
  • Calculus
Replies
4
Views
986
  • Calculus
Replies
8
Views
668
Replies
4
Views
940
Replies
16
Views
1K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
3
Views
1K
Replies
5
Views
2K
Back
Top