How Is the Inverse Hyperbolic Tangent Derived from Its Definition?

In summary: To find the radius of convergence for this sum, we can use the ratio test. The ratio test states that for a series $\sum_{n = 0}^{\infty}a_n$, if $\lim_{n \to \infty} \left|\frac
  • #1
Guest2
193
0
Show from the definition of arctanh as the inverse function of tanh that, for $x \in (-1, 1)$

$$\tanh^{-1}{x} = \frac{1}{2}\log\left(\frac{1+x}{1-x}\right)$$

The definition of hyperbolic tangent is $\displaystyle \tanh{h} = \frac{e^x-e^{-x}}{e^{x}+e^{-x}}$

Let $\displaystyle y = \frac{e^x-e^{-x}}{e^x+e^{-x}} =\frac{e^x+e^{-x}-2e^{-x}}{e^x+e^{-x}}= 1-\frac{2e^{-x}}{e^x+e^{-x}} $

So $\displaystyle 1-y = \frac{2e^{-x}}{e^x+e^{-x}}$ so $\frac{1-y}{1+y} = 2e^{-2x}$ therefore $\displaystyle \log(\frac{1-y}{1+y}) = \log(e^{-2x}) = -2x$, so $x = -\log\left(\frac{1-y}{1+y}\right) = \frac{1}{2}\log\left(\frac{1+y}{1-y}\right)$

Therefore $\tanh^{-1}{x} = \frac{1}{2}\log\left(\frac{1+x}{1-x}\right)$. Is this correct? How do I find the expansion of $\tanh^{-1}{x}$ upto and including the term containing $x^5$ from this?
 
Physics news on Phys.org
  • #2
I get it I think

$\displaystyle \frac{1}{1-x} = \sum_{k=0}^{\infty} x^k \implies \log(1-t) = -\sum_{k =0}^{\infty} \frac{x^{k+1}}{k+1}$

Similarly, $\displaystyle \frac{1}{1+x} = \sum_{k=0}^{\infty} (-1)^kx^k \implies \log(1+t) = \sum_{k =0}^{\infty} \frac{(-1)^kx^{k+1}}{k+1}$

Therefore $\displaystyle \frac{1}{2}\log\left(\frac{1+x}{1-x}\right) = \frac{1}{2}\sum_{k =0}^{\infty} \frac{(-1)^kx^{k+1}}{k+1}+\frac{1}{2}\sum_{k =0}^{\infty} \frac{x^{k+1}}{k+1}$

So the answer is $\displaystyle x+\frac{x^3}{3}+\frac{x^5}{5}+\mathcal{O}(x^6)$ (Happy)
 
  • #3
Guest said:
Show from the definition of arctanh as the inverse function of tanh that, for $x \in (-1, 1)$

$$\tanh^{-1}{x} = \frac{1}{2}\log\left(\frac{1+x}{1-x}\right)$$

The definition of hyperbolic tangent is $\displaystyle \tanh{h} = \frac{e^x-e^{-x}}{e^{x}+e^{-x}}$

Let $\displaystyle y = \frac{e^x-e^{-x}}{e^x+e^{-x}} =\frac{e^x+e^{-x}-2e^{-x}}{e^x+e^{-x}}= 1-\frac{2e^{-x}}{e^x+e^{-x}} $

So $\displaystyle 1-y = \frac{2e^{-x}}{e^x+e^{-x}}$ so $\frac{1-y}{1+y} = 2e^{-2x}$ therefore $\displaystyle \log(\frac{1-y}{1+y}) = \log(e^{-2x}) = -2x$, so $x = -\log\left(\frac{1-y}{1+y}\right) = \frac{1}{2}\log\left(\frac{1+y}{1-y}\right)$

Therefore $\tanh^{-1}{x} = \frac{1}{2}\log\left(\frac{1+x}{1-x}\right)$. Is this correct? How do I find the expansion of $\tanh^{-1}{x}$ upto and including the term containing $x^5$ from this?

I suspect that what you have written is correct, but it is easier to resolve this into a quadratic equation...

$\displaystyle \begin{align*} x &= \textrm{artan}\,\left( y \right) \\ y &= \tanh{(x)} \\ y &= \frac{\mathrm{e}^x - \mathrm{e}^{-x}}{\mathrm{e}^x + \mathrm{e}^{-x}} \\ \left( \mathrm{e}^x + \mathrm{e}^{-x} \right) \, y &= \mathrm{e}^x - \mathrm{e}^{-x} \\ \mathrm{e}^x\,y + \mathrm{e}^{-x}\,y &= \mathrm{e}^x - \mathrm{e}^{-x} \\ \mathrm{e}^x \, \left( \mathrm{e}^x\,y + \mathrm{e}^{-x}\,y \right) &= \mathrm{e}^x \,\left( \mathrm{e}^x - \mathrm{e}^{-x} \right) \\ \left( \mathrm{e}^{x} \right) ^2 \,y + y &= \left( \mathrm{e}^{x} \right) ^2 - 1 \\ 1 + y &= \left( \mathrm{e}^x \right) ^2 - \left( \mathrm{e}^x \right) ^2 \, y \\ 1 + y &= \left( \mathrm{e}^x \right) ^2 \left( 1 - y \right) \\ \left( \mathrm{e}^x \right) ^2 &= \frac{1 + y }{1 - y} \\ \mathrm{e}^x &= \sqrt{ \frac{1 + y}{1 - y} } \\ x &= \ln{ \left( \sqrt{ \frac{1 + y}{1 - y} } \right) } \\ x &= \ln{ \left[ \left( \frac{1 + y}{1 - y} \right) ^{\frac{1}{2}} \right] } \\ x &= \frac{1}{2}\ln{ \left( \frac{1 + y}{1 - y} \right) } \end{align*}$

- - - Updated - - -

Guest said:
I get it I think

$\displaystyle \frac{1}{1-x} = \sum_{k=0}^{\infty} x^k \implies \log(1-t) = -\sum_{k =0}^{\infty} \frac{x^{k+1}}{k+1}$

Similarly, $\displaystyle \frac{1}{1+x} = \sum_{k=0}^{\infty} (-1)^kx^k \implies \log(1+t) = \sum_{k =0}^{\infty} \frac{(-1)^kx^{k+1}}{k+1}$

Therefore $\displaystyle \frac{1}{2}\log\left(\frac{1+x}{1-x}\right) = \frac{1}{2}\sum_{k =0}^{\infty} \frac{(-1)^kx^{k+1}}{k+1}+\frac{1}{2}\sum_{k =0}^{\infty} \frac{x^{k+1}}{k+1}$

So the answer is $\displaystyle x+\frac{x^3}{3}+\frac{x^5}{5}+\mathcal{O}(x^6)$ (Happy)

That is correct, nice job. You should also say what the region of convergence is though.
 
  • #4
Prove It said:
I suspect that what you have written is correct, but it is easier to resolve this into a quadratic equation...

$\displaystyle \begin{align*} x &= \textrm{artan}\,\left( y \right) \\ y &= \tanh{(x)} \\ y &= \frac{\mathrm{e}^x - \mathrm{e}^{-x}}{\mathrm{e}^x + \mathrm{e}^{-x}} \\ \left( \mathrm{e}^x + \mathrm{e}^{-x} \right) \, y &= \mathrm{e}^x - \mathrm{e}^{-x} \\ \mathrm{e}^x\,y + \mathrm{e}^{-x}\,y &= \mathrm{e}^x - \mathrm{e}^{-x} \\ \mathrm{e}^x \, \left( \mathrm{e}^x\,y + \mathrm{e}^{-x}\,y \right) &= \mathrm{e}^x \,\left( \mathrm{e}^x - \mathrm{e}^{-x} \right) \\ \left( \mathrm{e}^{x} \right) ^2 \,y + y &= \left( \mathrm{e}^{x} \right) ^2 - 1 \\ 1 + y &= \left( \mathrm{e}^x \right) ^2 - \left( \mathrm{e}^x \right) ^2 \, y \\ 1 + y &= \left( \mathrm{e}^x \right) ^2 \left( 1 - y \right) \\ \left( \mathrm{e}^x \right) ^2 &= \frac{1 + y }{1 - y} \\ \mathrm{e}^x &= \sqrt{ \frac{1 + y}{1 - y} } \\ x &= \ln{ \left( \sqrt{ \frac{1 + y}{1 - y} } \right) } \\ x &= \ln{ \left[ \left( \frac{1 + y}{1 - y} \right) ^{\frac{1}{2}} \right] } \\ x &= \frac{1}{2}\ln{ \left( \frac{1 + y}{1 - y} \right) } \end{align*}$

- - - Updated - - -
That is correct, nice job. You should also say what the region of convergence is though.
Thank you. In speaking of the range of convergence, how do I find the radius converges when I've the sum of two series as in above?
 
  • #5
Guest said:
Thank you. In speaking of the range of convergence, how do I find the radius converges when I've the sum of two series as in above?

Any series which is generated from combining two or more other series only converges where the original series all converged.
 

FAQ: How Is the Inverse Hyperbolic Tangent Derived from Its Definition?

What is the inverse hyperbolic tangent function?

The inverse hyperbolic tangent function, also known as arctanh or tanh-1, is the inverse function of the hyperbolic tangent function. It is used to find the angle whose hyperbolic tangent is a given number.

What is the domain and range of the inverse hyperbolic tangent function?

The domain of the inverse hyperbolic tangent function is all real numbers from -1 to 1, since the range of the hyperbolic tangent function is also -1 to 1. The range of the inverse hyperbolic tangent function is all real numbers.

What is the graph of the inverse hyperbolic tangent function?

The graph of the inverse hyperbolic tangent function is a symmetrical curve that approaches the x-axis as it extends to infinity on both sides. It has an asymptote at y = -1 and y = 1, and it crosses the x-axis at y = 0.

What is the relationship between the inverse hyperbolic tangent function and the natural logarithm?

The inverse hyperbolic tangent function can be expressed using the natural logarithm function as ln((1+x)/(1-x)). This relationship can be used to simplify calculations involving the inverse hyperbolic tangent function.

What are the applications of the inverse hyperbolic tangent function?

The inverse hyperbolic tangent function is commonly used in statistics and engineering, particularly in calculations involving probability and signal processing. It is also used in computer science for data compression and image processing.

Similar threads

Replies
2
Views
2K
Replies
4
Views
2K
Replies
2
Views
1K
Replies
5
Views
1K
Replies
3
Views
2K
Replies
10
Views
2K
Replies
6
Views
657
Back
Top