- #1
vwmeche94
- 10
- 0
PF,
I need to design a cart that will move (horizontally/linearly) a load of ~40,000 lbs including its own weight (about 6500 lbs) at a total distance of 70 ft on a set of rails.
Known data:
1. Cart will need to move at a distance of 1 ft/s
2. Diameter of the cart wheels (4) is 15 in.
3. Coefficient of friction, COF (steel-on-steel) = 0.8
4. The shaft diameter (4140 steel) is 2 3/16"
5. Electric motor of 2.5 HP
I have calculated the diameter to yield 15.27 rpm and FLT (Full Load Torque) of a 2.5 HP motor to be 859.85 lb-ft using that rpm.
Based on an equation shared with me from a Machine Design Book,
W (weight) x mu (COF) / r (radius) = 40,000 lb x 0.8 ÷ 7.5 in = 4266 lb/in - load at each wheel.
What I need to determine is the shaft torque under load and the type of gearing (gear box) I should use to accelerate to and maintain a speed of 1 ft/s with a 40,000 lb load. I also need to determine if the 2.5 HP motor is adequate enough to handle repeated moving of the load.
Thank you in advance,
I need to design a cart that will move (horizontally/linearly) a load of ~40,000 lbs including its own weight (about 6500 lbs) at a total distance of 70 ft on a set of rails.
Known data:
1. Cart will need to move at a distance of 1 ft/s
2. Diameter of the cart wheels (4) is 15 in.
3. Coefficient of friction, COF (steel-on-steel) = 0.8
4. The shaft diameter (4140 steel) is 2 3/16"
5. Electric motor of 2.5 HP
I have calculated the diameter to yield 15.27 rpm and FLT (Full Load Torque) of a 2.5 HP motor to be 859.85 lb-ft using that rpm.
Based on an equation shared with me from a Machine Design Book,
W (weight) x mu (COF) / r (radius) = 40,000 lb x 0.8 ÷ 7.5 in = 4266 lb/in - load at each wheel.
What I need to determine is the shaft torque under load and the type of gearing (gear box) I should use to accelerate to and maintain a speed of 1 ft/s with a 40,000 lb load. I also need to determine if the 2.5 HP motor is adequate enough to handle repeated moving of the load.
Thank you in advance,
Last edited: