- #1
Peter P.
- 23
- 0
Homework Statement
Determine the velocity of the 60- block A if the two blocks are released from rest and the 40- block B moves 0.6 up the in cline. The coefficient of kinetic friction between both blocks and the inclined planes is = 0.05.
Here is the given diagram:
The Attempt at a Solution
Since there is a pulley system, I began with the length equation so that i can determine the displacement of A with respect to B.
ΔsA = -0.5ΔsB
Once everything is plugged in, ΔsA = -0.3 (or just 0.3m down along its plane).
Using this, i calculated the change in height as it falls from the top to the next position. Δh = 0.2598076211 m. Then i calculated the normal force exerted by the plane and the force of friction acting on the block A (Ff = 14.715 N (directed towards the pulley system). So here's the part that i don't get. I am not sure how to tie everything together. I know that:
Kinetic Energy (T), Work and potential Energy (U)
T1 + U1 -> 2 = T2
0.5mAv12 + U1 -> 2 = 0.5mAv22
From the free body diagram of the isolated mass A, i know that there is a normal force, the weight of the block, and a friction force acting on it. So from this information, I believe that there should be gravitation potential energy (VG = mgΔh), and i feel like the friction force needs to be included as well. So i would integrate the force i calculated, with respect to s (∫Ff ds). Then i feel like it should be integrated from 0 -> 0.3. Is this correct so far?
Thanks in advance for any help.