- #1
_N3WTON_
- 351
- 3
A stop block, s, prevents a crate from sliding down a [itex] \theta = 33 \hspace{2 mm} degrees [/itex] incline. A tensile force [itex] F = (F_{o}t) N [/itex] acts on the crate parallel to the incline, where [itex] F_{o} = 325 \frac{N}{s} [/itex]. If the coefficients of static and kinetic friction between the crate and the incline are [itex] \mu_{s} = 0.325 [/itex] and [itex] \mu_{k} = 0.225 [/itex], respectively, and the crate has mass of [itex] m = 50.8 kg [/itex], how long will it take until the crate reaches a velocity of [itex] v = 2.44 \frac{m}{s} [/itex] as it moves up the incline.
I know when [itex] f < f_{max} = \mu_{s}mgcos(\theta) [/itex], the system isn't moving, and the net force is:
[itex] F - mgsin(\theta) - f = 0 [/itex].
[itex] f = F-mgsin(\theta) < \mu_{s}mgcos(\theta) [/itex]
When [itex] t = t_{1} [/itex], [itex] f = \mu_{s}mgcos(\theta) [/itex] so I have:
[itex] 325t_{1} - mgsin(\theta) = \mu_{s}mgcos(\theta) [/itex]
[itex] t_{1} = \frac{mg(sin(\theta)+\mu_{s}cos(\theta))}{325} [/itex]
Now plugging in my values:
[itex] t_{1} = \frac{(50.8)(9.81)(sin(33)+(0.325)cos(33))}{325} [/itex]
[itex] t_{1} = 1.25 s [/itex]
So, after 1.25 seconds, the block moves up along the incline and the net force is:
[itex] F - mgsin(\theta) - \mu_{k}mgcos(\theta) [/itex]
The impulse of the net force is:
[itex] \int_{t}^{t_{1}} (F-mgsin(\theta)-\mu_{k}cos(\theta)) = m(v-0) [/itex]
[itex] \int_{t}^{t_{1}}(325t - mgsin(\theta)-\mu_{k}mgcos(\theta)) = mv [/itex]
[itex] 162.5(t^{2}-t_{1}^{2}) - mg(sin(\theta)-\mu_{k}cos(\theta))(t-t_{1}) = mv [/itex]
[itex] 162.5(t^{2}-(1.25)^{2})-177.4(t-1.25) = 123.95 [/itex]
[itex] 162.5t^{2} - 177.4t - 126.76 = 0 [/itex]
When I solve this quadratic, I get [itex] t = 1.58 s [/itex]. However, this answer is not correct and I am not quite sure where I went wrong. Any help is appreciated. Thanks.
Homework Equations
The Attempt at a Solution
I know when [itex] f < f_{max} = \mu_{s}mgcos(\theta) [/itex], the system isn't moving, and the net force is:
[itex] F - mgsin(\theta) - f = 0 [/itex].
[itex] f = F-mgsin(\theta) < \mu_{s}mgcos(\theta) [/itex]
When [itex] t = t_{1} [/itex], [itex] f = \mu_{s}mgcos(\theta) [/itex] so I have:
[itex] 325t_{1} - mgsin(\theta) = \mu_{s}mgcos(\theta) [/itex]
[itex] t_{1} = \frac{mg(sin(\theta)+\mu_{s}cos(\theta))}{325} [/itex]
Now plugging in my values:
[itex] t_{1} = \frac{(50.8)(9.81)(sin(33)+(0.325)cos(33))}{325} [/itex]
[itex] t_{1} = 1.25 s [/itex]
So, after 1.25 seconds, the block moves up along the incline and the net force is:
[itex] F - mgsin(\theta) - \mu_{k}mgcos(\theta) [/itex]
The impulse of the net force is:
[itex] \int_{t}^{t_{1}} (F-mgsin(\theta)-\mu_{k}cos(\theta)) = m(v-0) [/itex]
[itex] \int_{t}^{t_{1}}(325t - mgsin(\theta)-\mu_{k}mgcos(\theta)) = mv [/itex]
[itex] 162.5(t^{2}-t_{1}^{2}) - mg(sin(\theta)-\mu_{k}cos(\theta))(t-t_{1}) = mv [/itex]
[itex] 162.5(t^{2}-(1.25)^{2})-177.4(t-1.25) = 123.95 [/itex]
[itex] 162.5t^{2} - 177.4t - 126.76 = 0 [/itex]
When I solve this quadratic, I get [itex] t = 1.58 s [/itex]. However, this answer is not correct and I am not quite sure where I went wrong. Any help is appreciated. Thanks.