- #1
Albert1
- 1,221
- 0
$x,y\in N$
$\dfrac {1}{x}+\dfrac{1}{y}=\dfrac{1}{1987}---(1)$
find :$max(x+y)$ and $min(x)$
How many solutions of (x,y) will satisfy (1) ?
$\dfrac {1}{x}+\dfrac{1}{y}=\dfrac{1}{1987}---(1)$
find :$max(x+y)$ and $min(x)$
How many solutions of (x,y) will satisfy (1) ?