MHB How Many Times Do I Have To Increase by 3%?

  • Thread starter Thread starter piAreRound1
  • Start date Start date
  • Tags Tags
    increase
AI Thread Summary
To determine how many times to increase 30 by 3% to reach or exceed 500, the formula used is 30 * 1.03^n ≥ 500. By dividing through by 30 and taking the natural logarithm, the equation simplifies to n ≥ ln(50/3) / ln(1.03). The result indicates that n must be rounded up to the nearest integer, yielding n = 96. This means 30 must be increased by 3% a total of 96 times to meet or exceed 500.
piAreRound1
Messages
1
Reaction score
0
I want to know how many time I have to increase 30 by 3% before it is greater or equal to 500.

I think this is the correct formula:
30 * 1.03^x >= 500

What steps do I have to take to solve it?
 
Mathematics news on Phys.org
I would write:

$$30\cdot1.03^n\ge500$$

Divide through by 30:

$$1.03^n\ge\frac{50}{3}$$

Take the natural log of both sides, and apply a log rule to obtain:

$$n\ln(1.03)\ge\ln\left(\frac{50}{3}\right)$$

Hence:

$$n\ge\frac{\ln\left(\dfrac{50}{3}\right)}{\ln(1.03)}$$

Since presumably \(n\) is an integer, we could write:

$$n=\left\lceil\frac{\ln\left(\dfrac{50}{3}\right)}{\ln(1.03)}\right\rceil$$

This is the "ceiling" function and it tells us to round up to the nearest integer. According to W|A, we find:

$$n=96$$

Wolfram|Alpha: Computational Intelligence
 
piAreRound said:
I want to know how many time I have to increase 30 by 3% before it is greater or equal to 500.
Tattoo this on your wrist (under your watch!):

if a^p = b then p = ln(b) / ln(a)
 
My wrist is getting awfully crowded!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top