- #1
hxthanh
- 16
- 0
$\boxed 1$ How many ways writing positive integer $n\;$ as the sum of the positive integers different each pairs? (no permutation)
Example: $6=6=1+5=2+4=1+2+3 \quad $ (4 ways)
$\boxed 2$ How many ways writing positive integer $n\;$ as the sum of the positive integers? (no permutation)
Example: $\begin{align*} 6&=6\\ & =1+5 = 2+4 = 3+3 \\&= 1+1+4 =1+2+3 =2+2+2\\ &=1+1+1+3 =1+1+2+2 \\& =1+1+1+1+2 \\&=1+1+1+1+1+1 \end{align*}\quad $ (11 ways)
Example: $6=6=1+5=2+4=1+2+3 \quad $ (4 ways)
$\boxed 2$ How many ways writing positive integer $n\;$ as the sum of the positive integers? (no permutation)
Example: $\begin{align*} 6&=6\\ & =1+5 = 2+4 = 3+3 \\&= 1+1+4 =1+2+3 =2+2+2\\ &=1+1+1+3 =1+1+2+2 \\& =1+1+1+1+2 \\&=1+1+1+1+1+1 \end{align*}\quad $ (11 ways)