How should I find ## x_{2}(t) ## for this nonlinear integro-differential equation?

  • #1
Math100
802
221
Homework Statement
Consider the nonlinear integro-differential equation ## \frac{dx}{dt}=-\lambda x(t)+\epsilon x(t)\int_{0}^{\infty}f(t-s)x(s)ds, \lvert \epsilon \rvert<<1, x(0)=A ##, where
## \lambda ## is a positive constant and ## f(z) ## is a sufficiently well-behaved function.
Use perturbation methods to show that the solution of this equation can be expressed as ## x(t)=x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}) ##, where ## x_{0}(t)=Ae^{-\lambda t},
x_{1}(t)=x_{0}(t)\int_{0}^{t}\int_{0}^{\infty}f(u-s)x_{0}(s)dsdu,
x_{2}(t)=e^{-\lambda t}\int_{0}^{t}du e^{\lambda u}\int_{0}^{\infty}ds f(u-s)(x_{0}(u)x_{1}(s)+x_{0}(s)x_{1}(u)) ##. If ## f(z)=e^{-\mu\lvert z \rvert}, \mu>0 ##, show that ## x(t)=Ae^{-\lambda t}(1+\frac{A\epsilon}{\mu^{2}-\lambda^{2}}(\frac{2\mu}{\lambda}(1-e^{-\lambda t})-\frac{\mu+\lambda}{\mu}(1-e^{-\mu t})))+O(\epsilon^{2}) ##,
for ## \mu\neq\lambda ##, and ## x(t)=Ae^{-\lambda t}(1+\frac{A\epsilon}{2\lambda^{2}}(3(1-e^{-\lambda t})-2\lambda te^{-\lambda t}))+O(\epsilon^{2}) ##, for ## \mu=\lambda ##.
Relevant Equations
None.
Proof:

Consider the nonlinear integro-differential equation
## \frac{dx}{dt}=-\lambda x(t)+\epsilon x(t)\int_{0}^{\infty}f(t-s)x(s)ds, \lvert \epsilon \rvert<<1, x(0)=A ##,
where ## \lambda ## is a positive constant and ## f(z) ## is a sufficiently well-behaved function.
Let ## \epsilon=0 ##.
Then the unperturbed equation is ## \frac{dx}{dt}=-\lambda x(t) ## with the initial condition ## x(0)=A ##.
This gives ## \frac{dx}{dt}=-\lambda x(t)\implies \frac{dx}{x}=-\lambda dt\implies\int\frac{dx}{x}
=-\lambda\int dt\implies ln\lvert x \rvert=-\lambda t+C\implies
x=Ce^{-\lambda t} ## where ## C ## is the constant of integration.
Since ## x(0)=A ##, it follows that ## A=C ##, so we have ## x=Ae^{-\lambda t} ##.
Hence, ## x_{0}(t)=Ae^{-\lambda t} ##.
Applying the perturbation theory produces ## x(t)=x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}) ##
for ## \lvert \epsilon \rvert<<1 ##.
By direct substitution of this expansion ## x(t)=x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}) ## into the original equation, we get ## \frac{d}{dt}(x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}))
=-\lambda(x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}))+\epsilon(x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}))\int_{0}^{\infty}f(t-s)(x_{0}(s)+\epsilon x_{1}(s)+\epsilon^{2}x_{2}(s)+O(\epsilon^{3})) ## for ## \lvert \epsilon \rvert<<1, x(0)=A ##, where ## \lambda ## is a positive constant and ## f(z) ## is a sufficiently well-behaved function.
Observe that ## \frac{d}{dt}(x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}))
=-\lambda x_{0}(t)-\epsilon\lambda x_{1}(t)-\epsilon^{2}\lambda x_{2}(t)-\lambda O(\epsilon^{3})
+(\epsilon x_{0}(t)+\epsilon^{2}x_{1}(t)+\epsilon^{3}x_{2}(t)+\epsilon O(\epsilon^{3}))\int_{0}^{\infty}f(t-s)(x_{0}(s)
+\epsilon x_{1}(s)+\epsilon^{2}x_{2}(s)+O(\epsilon^{3}))=-A\lambda e^{-\lambda t}-\epsilon\lambda x_{1}(t)-\epsilon^{2}\lambda x_{2}(t)+O(\epsilon^{3})+(A\epsilon e^{-\lambda t}+\epsilon^{2}x_{1}(t)+\epsilon^{3}x_{2}(t)+O(\epsilon^{3}))\int_{0}^{\infty}f(t-s)(Ae^{-\lambda s}
+\epsilon x_{1}(s)+\epsilon^{2}x_{2}(s)+O(\epsilon^{3}))ds ##.
Now we will find ## x_{1}(t) ## and ## x_{2}(t) ## by grouping the terms with the same powers
of ## \epsilon ## together.
Note that ## -\epsilon\lambda x_{1}(t)+A\epsilon e^{-\lambda t}\int_{0}^{\infty}f(t-s)\cdot Ae^{-\lambda s}ds
=\epsilon(-\lambda x_{1}(t)+Ae^{-\lambda t}\int_{0}^{\infty}f(t-s)\cdot Ae^{-\lambda s}ds) ##,
so we have ## \frac{dx_{1}}{dt}=-\lambda x_{1}(t)+x_{0}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)ds ##.
This implies that ## \frac{dx_{1}}{dt}=-\lambda x_{1}(t)+x_{0}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)ds
\implies \frac{dx_{1}}{dt}=x_{0}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)ds
\implies x_{1}(t)=\int_{0}^{t}(x_{0}(u)\int_{0}^{\infty}f(u-s)x_{0}(s)ds)du
\implies x_{1}(t)=x_{0}(t)\int_{0}^{t}du\int_{0}^{\infty}f(u-s)x_{0}(s)ds ##.
Similarly, we have ## -\epsilon^{2}\lambda x_{2}(t)+A\epsilon e^{-\lambda t}\int_{0}^{\infty}
f(t-s)\cdot\epsilon x_{1}(s)ds+\epsilon^{2}x_{1}(t)\int_{0}^{\infty}f(t-s)\cdot Ae^{-\lambda s}ds
=\epsilon^{2}(-\lambda x_{2}(t)+Ae^{-\lambda t}\int_{0}^{\infty}f(t-s)\cdot x_{1}(s)ds
+x_{1}(t)\int_{0}^{\infty}f(t-s)\cdot Ae^{-\lambda s}ds=\epsilon^{2}(-\lambda x_{2}(t)
+x_{0}(t)\int_{0}^{\infty}f(t-s)x_{1}(s)ds+x_{1}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)ds ##,
which implies that ## \frac{dx_{2}}{dt}=-\lambda x_{2}(t)+x_{0}(t)\int_{0}^{\infty}
f(t-s)x_{1}(s)ds+x_{1}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)ds ##.
Thus, ## \frac{dx_{2}}{dt}=-\lambda x_{2}(t)+x_{0}(t)\int_{0}^{\infty}
f(t-s)x_{1}(s)ds+x_{1}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)ds\implies
\frac{dx_{2}}{dt}=x_{0}(t)\int_{0}^{\infty}f(t-s)x_{1}(s)ds+
x_{1}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)ds\implies
\frac{dx_{2}}{dt}=x_{0}(u)\int_{0}^{\infty}f(u-s)x_{1}(s)ds
+x_{1}(u)\int_{0}^{\infty}f(u-s)x_{0}(s)ds\implies
x_{2}(t)=\int_{0}^{t}(x_{0}(u)\int_{0}^{\infty}f(u-s)x_{1}(s)ds
+x_{1}(u)\int_{0}^{\infty}f(u-s)x_{0}(s)ds)du ##.

From here, how should I show/prove that ## x_{2}(t)=e^{-\lambda t}\int_{0}^{t}du e^{\lambda u}\int_{0}^{\infty}
ds f(u-s)(x_{0}(u)x_{1}(s)+x_{0}(s)x_{1}(u)) ##? Also, for the second part of the question/problem, I've constructed
a different proof as below:

Let ## f(z)=e^{-\mu\lvert z \rvert} ## for ## \mu>0 ##, where ## x(t)=x_{0}(t)+\epsilon x_{1}(t)+O(\epsilon^{2}) ## such that ## x_{0}(t)=Ae^{-\lambda t} ##
and ## x_{1}(t)=x_{0}(t)\int_{0}^{t}du\int_{0}^{\infty}ds f(u-s)x_{0}(s) ##.
By using direct substitution of both ## x_{0}(t), x_{1}(t) ##,
we have ## x(t)=Ae^{-\lambda t}+\epsilon(Ae^{-\lambda t}\int_{0}^{t}du\int_{0}^{\infty}ds
f(u-s)\cdot Ae^{-\lambda s})+O(\epsilon^{2})\implies
x(t)=Ae^{-\lambda t}+A\epsilon e^{-\lambda t}\int_{0}^{t}\int_{0}^{\infty}f(z)
\cdot Ae^{-\lambda s}dsdu\implies
x(t)=Ae^{-\lambda t}(1+A\epsilon\int_{0}^{t}\int_{0}^{\infty}e^{-\mu\lvert z \rvert}
\cdot e^{-\lambda s}dsdu)\implies
x(t)=Ae^{-\lambda t}(1+A\epsilon\int_{0}^{t}\int_{0}^{\infty}e^{-\mu\lvert u-s \rvert}\cdot e^{-\lambda s}dsdu)
\implies x(t)=Ae^{-\lambda t}(1+A\epsilon\int_{0}^{t}\int_{0}^{\infty}e^{-\mu\lvert u-s \rvert-\lambda s}dsdu) ##.

And from here, how should I show/prove that ## x(t)=Ae^{-\lambda t}(1+\frac{A\epsilon}{\mu^{2}-\lambda^{2}}
(\frac{2\mu}{\lambda}(1-e^{-\lambda t})-\frac{\mu+\lambda}{\mu}(1-e^{-\mu t})))+O(\epsilon^{2}) ## for
## \mu\neq\lambda, \mu>0 ##? Similarly, for ## \mu=\lambda ##?
 
Last edited:
Physics news on Phys.org
  • #2
Please break up long lines of LaTeX so that readers don't have to scroll way off to the right to see the rest of the line. Each of the lines that contain an implication symbol could benefit from being split into multiple lines.
 
  • Like
Likes renormalize
  • #3
Here's an example of what i mean by breaking up long lines. In your original post the stuff below was one long line that extended to about three times the width of my screen. My only changes were to break the line at points between equal expressions and terms of sums.
Math100 said:
Observe that ## \frac{d}{dt}(x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}))##
##=-\lambda x_{0}(t)-\epsilon\lambda x_{1}(t)-\epsilon^{2}\lambda x_{2}(t)-\lambda O(\epsilon^{3})##
##+(\epsilon x_{0}(t)+\epsilon^{2}x_{1}(t)+\epsilon^{3}x_{2}(t)+\epsilon O(\epsilon^{3}))\int_{0}^{\infty}f(t-s)(x_{0}(s)##
##+\epsilon x_{1}(s)+\epsilon^{2}x_{2}(s)+O(\epsilon^{3}))##
##=-A\lambda e^{-\lambda t}-\epsilon\lambda x_{1}(t)-\epsilon^{2}\lambda x_{2}(t)+O(\epsilon^{3})##
##+(A\epsilon e^{-\lambda t}+\epsilon^{2}x_{1}(t)+\epsilon^{3}x_{2}(t)+O(\epsilon^{3}))\int_{0}^{\infty}f(t-s)(Ae^{-\lambda s}
+\epsilon x_{1}(s)+\epsilon^{2}x_{2}(s)+O(\epsilon^{3}))ds ##.
 
  • Like
Likes SammyS and Math100
  • #4
How to show that ## x(t)=Ae^{-\lambda t}(1+\frac{A\epsilon}{\mu^{2}
-\lambda^{2}}(\frac{2\mu}{\lambda}(1-e^{-\lambda t})
-\frac{\mu+\lambda}{\mu}(1-e^{-\mu t})))+O(\epsilon^{2}) ##
for ## \mu\neq\lambda ##? I know that I should integrate ## \int_{0}^{\infty}e^{-\mu\lvert u-s \rvert-\lambda s}ds ## first,
but how should I integrate this?
 
  • #5
I will reformat this mess so that it has a higher chance of a reply. I'm not an expert in perturbation theory so it's not an answer, but only the OP restructured. @Math100 , please hit the reply button to learn from the format for future posts and check for typos. Another remark: this has been a long text and it might have been better to split it into smaller steps and more than one thread. This also helps you to structure your work and concentrate on the steps you do not understand.
_____________________________________________________________________________​
Homework Statement: Consider the nonlinear integro-differential equation $$ \frac{dx}{dt}=-\lambda x(t)+\epsilon x(t)\int_{0}^{\infty}f(t-s)x(s)ds$$
where ##|\epsilon| <<1\, , \, x(0)=A \, , \, \lambda >0 ## is a constant and ## f(z) ## is a sufficiently well-behaved function.

Use perturbation methods to show that the solution of this equation can be expressed as $$ x(t)=x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}) \text{ where }$$
\begin{align*}
x_{0}(t)&=Ae^{-\lambda t}\\
x_{1}(t)&=x_{0}(t)\int_{0}^{t}\int_{0}^{\infty}f(u-s)x_{0}(s)\,ds\,du\\
x_{2}(t)&=e^{-\lambda t}\int_{0}^{t}\,du\, e^{\lambda u}\int_{0}^{\infty}\,ds \,f(u-s)(x_{0}(u)x_{1}(s)+x_{0}(s)x_{1}(u))
\end{align*}
If ## f(z)=e^{-\mu\lvert z \rvert}## with ##\mu>0##, show that
$$
x(t)=\begin{cases}
Ae^{-\lambda t}(1+\frac{A\epsilon}{\mu^{2}-\lambda^{2}}(\frac{2\mu}{\lambda}(1-e^{-\lambda t})-\frac{\mu+\lambda}{\mu}(1-e^{-\mu t})))+O(\epsilon^{2}) &\text{ if }\mu\neq\lambda\\[8pt]
Ae^{-\lambda t}(1+\frac{A\epsilon}{2\lambda^{2}}(3(1-e^{-\lambda t})-2\lambda te^{-\lambda t}))+O(\epsilon^{2})&\text{ if }\mu=\lambda
\end{cases}
$$
Proof: (without repeating the above constraints)

Consider the nonlinear integro-differential equation
$$\dfrac{dx}{dt}=-\lambda x(t)+\epsilon x(t)\int_{0}^{\infty}f(t-s)x(s)\,ds.$$
If ## \epsilon=0 ## the unperturbed equation is ## \dfrac{dx}{dt}=-\lambda x(t) ## with the initial condition ## x(0)=A ##. This gives
\begin{align*}
\dfrac{dx}{dt}=-\lambda x(t)&\implies \dfrac{dx}{x}=-\lambda dt \implies\int\dfrac{dx}{x}=-\lambda\int dt\\
&\implies ln\lvert x \rvert=-\lambda t+C \implies x=Ce^{-\lambda t}
\end{align*}
Since ## x(0)=A ##, it follows that ## A=C ##, so we have ## x=Ae^{-\lambda t}, ## i.e. ## x_{0}(t)=Ae^{-\lambda t} ##.

Applying the perturbation theory produces ## x(t)=x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}) ## for ## \lvert \epsilon \rvert<<1 ##.
By direct substitution of this expansion into the original equation, we get
\begin{align*}
\dfrac{d}{dt}&\left(x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}) \right)\\
&=-\lambda \left(x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3})\right)\\
&\phantom{=}+\epsilon\left(x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3})\right) \int_{0}^{\infty}f(t-s)(x_{0}(s)+\epsilon x_{1}(s)+\epsilon^{2}x_{2}(s)+O(\epsilon^{3}))\,ds\\
&=-\lambda x_{0}(t)-\epsilon\lambda x_{1}(t)-\epsilon^{2}\lambda x_{2}(t)-\lambda O(\epsilon^{3})\\
&\phantom{=}+\left(\epsilon x_{0}(t)+\epsilon^{2}x_{1}(t)+\epsilon^{3}x_{2}(t)+\epsilon O(\epsilon^{3}) \right) \int_{0}^{\infty}f(t-s)(x_{0}(s)+\epsilon x_{1}(s)+\epsilon^{2}x_{2}(s)+O(\epsilon^{3}))\,ds\\
&=-A\lambda e^{-\lambda t}-\epsilon\lambda x_{1}(t)-\epsilon^{2}\lambda x_{2}(t)+O(\epsilon^{3})\\
&\phantom{=}+\left(A\epsilon e^{-\lambda t}+\epsilon^{2}x_{1}(t)+\epsilon^{3}x_{2}(t)+O(\epsilon^{3})\right)\int_{0}^{\infty}f(t-s)(Ae^{-\lambda s}
+\epsilon x_{1}(s)+\epsilon^{2}x_{2}(s)+O(\epsilon^{3}))\,ds
\end{align*}
Now we will find ## x_{1}(t) ## and ## x_{2}(t) ## by grouping the terms with the same powers of ## \epsilon .## Note that
$$-\epsilon\lambda x_{1}(t)+A\epsilon e^{-\lambda t}\int_{0}^{\infty}f(t-s)\cdot Ae^{-\lambda s}ds
=\epsilon(-\lambda x_{1}(t)+Ae^{-\lambda t}\int_{0}^{\infty}f(t-s)\cdot Ae^{-\lambda s}ds)$$
so we have
$$ \dfrac{dx_{1}}{dt}=-\lambda x_{1}(t)+x_{0}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)\,ds .$$
This implies
\begin{align*}
\dfrac{dx_{1}}{dt}&=-\lambda x_{1}(t)+x_{0}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)\,ds\\[6pt]
&\implies \dfrac{dx_{1}}{dt}=x_{0}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)\,ds \\
&\implies x_{1}(t)=\int_{0}^{t}(x_{0}(u)\int_{0}^{\infty}f(u-s)x_{0}(s)\,ds)\,du\\
&\implies x_{1}(t)=x_{0}(t)\int_{0}^{t}du\int_{0}^{\infty}f(u-s)x_{0}(s)\,ds .
\end{align*}
Similarly, we have
\begin{align*}
-\epsilon^{2}\lambda x_{2}(t)&+A\epsilon e^{-\lambda t}\int_{0}^{\infty}
f(t-s)\cdot\epsilon x_{1}(s)ds+\epsilon^{2}x_{1}(t)\int_{0}^{\infty}f(t-s)\cdot Ae^{-\lambda s}\,ds\\
&=\epsilon^{2}(-\lambda x_{2}(t)+Ae^{-\lambda t}\int_{0}^{\infty}f(t-s)\cdot x_{1}(s)ds
+x_{1}(t)\int_{0}^{\infty}f(t-s)\cdot Ae^{-\lambda s}\,ds\\
&=\epsilon^{2}(-\lambda x_{2}(t)+x_{0}(t)\int_{0}^{\infty}f(t-s)x_{1}(s)ds+x_{1}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)\,ds
\end{align*}
which implies that $$\dfrac{dx_{2}}{dt}=-\lambda x_{2}(t)+x_{0}(t)\int_{0}^{\infty}
f(t-s)x_{1}(s)ds+x_{1}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)\,ds .$$
Thus,
\begin{align*}
\dfrac{dx_{2}}{dt}&=-\lambda x_{2}(t)+x_{0}(t)\int_{0}^{\infty} f(t-s)x_{1}(s)\,ds+x_{1}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)\,ds\\
&\implies \dfrac{dx_{2}}{dt}=x_{0}(t)\int_{0}^{\infty}f(t-s)x_{1}(s)\,ds+
x_{1}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)\,ds\\
&\implies \dfrac{dx_{2}}{dt}=x_{0}(u)\int_{0}^{\infty}f(u-s)x_{1}(s)\,ds
+x_{1}(u)\int_{0}^{\infty}f(u-s)x_{0}(s)\,ds\\
&\implies x_{2}(t)=\int_{0}^{t}(x_{0}(u)\int_{0}^{\infty}f(u-s)x_{1}(s)\,ds
+x_{1}(u)\int_{0}^{\infty}f(u-s)x_{0}(s)\,ds)\,du
\end{align*}
From here, how should I show/prove that
$$
x_{2}(t)=e^{-\lambda t}\int_{0}^{t}du e^{\lambda u}\int_{0}^{\infty}
ds \,f(u-s)(x_{0}(u)x_{1}(s)+x_{0}(s)x_{1}(u)) \text{ ?}
$$
Also, for the second part of the question/problem, I've constructed a different proof as below:

Let ## f(z)=e^{-\mu\lvert z \rvert} ## for ## \mu>0 ##, where ## x(t)=x_{0}(t)+\epsilon x_{1}(t)+O(\epsilon^{2}) ## such that ## x_{0}(t)=Ae^{-\lambda t} ##
and ## x_{1}(t)=x_{0}(t)\int_{0}^{t}du\int_{0}^{\infty}ds \,f(u-s)x_{0}(s) .## By using direct substitution of both ## x_{0}(t), x_{1}(t) ##, we have
\begin{align*}
x(t)&=Ae^{-\lambda t}+\epsilon(Ae^{-\lambda t}\int_{0}^{t}du\,\int_{0}^{\infty}ds\,
f(u-s)\cdot Ae^{-\lambda s})+O(\epsilon^{2})\\
&\implies x(t)=Ae^{-\lambda t}+A\epsilon e^{-\lambda t}\int_{0}^{t}\int_{0}^{\infty}f(z)
\cdot Ae^{-\lambda s}\,ds\,du\\
&\implies x(t)=Ae^{-\lambda t}(1+A\epsilon\int_{0}^{t}\int_{0}^{\infty}e^{-\mu\lvert z \rvert}
\cdot e^{-\lambda s}\,ds\,du)\\
&\implies x(t)=Ae^{-\lambda t}(1+A\epsilon\int_{0}^{t}\int_{0}^{\infty}e^{-\mu\lvert u-s \rvert}\cdot e^{-\lambda s}\,ds\,du)\\
&\implies x(t)=Ae^{-\lambda t}(1+A\epsilon\int_{0}^{t}\int_{0}^{\infty}e^{-\mu\lvert u-s \rvert-\lambda s}\,ds\,du)
\end{align*}

And from here, how should I show/prove that
$$
x(t)=Ae^{-\lambda t}\left(1+\dfrac{A\epsilon}{\mu^{2}-\lambda^{2}}
\left(\dfrac{2\mu}{\lambda}\left(1-e^{-\lambda t}\right)-\dfrac{\mu+\lambda}{\mu}\left(1-e^{-\mu t}\right)\right)\right)+O(\epsilon^{2})
$$
for ## \mu\neq\lambda, \mu>0 \text{ ?}## Similarly, for ## \mu=\lambda \text{ ?}##
 
  • Like
Likes Math100
  • #6
Use an integrating factor: [itex]\dot x + \lambda x = e^{-\lambda t}\frac{d}{dt}(xe^{\lambda t})[/itex]. Hence [tex]\begin{split}
e^{-\lambda t}\frac{d}{dt}(xe^{\lambda t}) &= \epsilon \int_0^\infty f(t-s) x(t) x(s)\,ds \\
x(t) &= Ae^{-\lambda t} + \epsilon e^{-\lambda t} \int_0^t e^{\lambda u} \int_0^\infty f(u-s) x(u) x(s)\,ds\,du.\end{split}
[/tex] It is now straightforward to substitute [itex]x = x_0 + \epsilon x_1 + \epsilon^2 x_2 + O(\epsilon^3)[/itex] and read off the terms at [itex]O(\epsilon^0)[/itex] etc.

To integrate [itex]\int_0^\infty h(|t-s|)g(s)\,ds[/itex], split the range of integration at [itex]t[/itex]: [tex]\begin{split}
\int_0^\infty h(|t-s|)g(s)\,ds &= \underbrace{\int_0^t h(|t-s|)g(s)\,ds}_{0 \leq s \leq t} +
\underbrace{\int_t^\infty h(|t-s|)g(s)\,ds}_{t \leq s < \infty} \\
&= \int_0^t h(t-s)g(s)\,ds + \int_t^\infty h(s-t)g(s)\,ds.\end{split}[/tex]
 
  • #7
pasmith said:
Use an integrating factor: [itex]\dot x + \lambda x = e^{-\lambda t}\frac{d}{dt}(xe^{\lambda t})[/itex]. Hence [tex]\begin{split}
e^{-\lambda t}\frac{d}{dt}(xe^{\lambda t}) &= \epsilon \int_0^\infty f(t-s) x(t) x(s)\,ds \\
x(t) &= Ae^{-\lambda t} + \epsilon e^{-\lambda t} \int_0^t e^{\lambda u} \int_0^\infty f(u-s) x(u) x(s)\,ds\,du.\end{split}
[/tex] It is now straightforward to substitute [itex]x = x_0 + \epsilon x_1 + \epsilon^2 x_2 + O(\epsilon^3)[/itex] and read off the terms at [itex]O(\epsilon^0)[/itex] etc.

To integrate [itex]\int_0^\infty h(|t-s|)g(s)\,ds[/itex], split the range of integration at [itex]t[/itex]: [tex]\begin{split}
\int_0^\infty h(|t-s|)g(s)\,ds &= \underbrace{\int_0^t h(|t-s|)g(s)\,ds}_{0 \leq s \leq t} +
\underbrace{\int_t^\infty h(|t-s|)g(s)\,ds}_{t \leq s < \infty} \\
&= \int_0^t h(t-s)g(s)\,ds + \int_t^\infty h(s-t)g(s)\,ds.\end{split}[/tex]
I've got
\begin{align*}
\int_{0}^{\infty} e^{-\mu\lvert u-s \rvert-\lambda s} \, ds &= \int_{0}^{t} e^{-\mu\lvert u-s \rvert-\lambda s} \, ds + \int_{t}^{\infty} e^{-\mu\lvert u-s \rvert-\lambda s} \, ds \\
&= \int_{0}^{t} e^{-\mu(u-s)-\lambda s} \, ds + \int_{t}^{\infty} e^{-\mu(s-u)-\lambda s} \, ds \\
&= e^{-\mu u} \int_{0}^{t} e^{(\mu-\lambda)s} \, ds + e^{\mu u} \int_{t}^{\infty} e^{-(\mu+\lambda)s} \, ds \\
&= e^{-\mu u} \left[\frac{e^{(\mu-\lambda)s}}{\mu-\lambda}\right]_{0}^{t} + e^{\mu u} \left[-\frac{e^{-(\mu+\lambda)s}}{\mu+\lambda}\right]_{t}^{\infty} \\
&= e^{-\mu u} \left(\frac{e^{(\mu-\lambda)t} - 1}{\mu - \lambda}\right) + e^{\mu u} \left(\frac{e^{-(\mu+\lambda)t}}{\mu + \lambda}\right).
\end{align*}
Is this correct?
 

FAQ: How should I find ## x_{2}(t) ## for this nonlinear integro-differential equation?

What is a nonlinear integro-differential equation?

A nonlinear integro-differential equation is a type of mathematical equation that involves both integral and differential terms, where the relationship is nonlinear. This means that the equation cannot be expressed as a linear combination of the unknown function and its derivatives. Such equations often arise in various fields such as physics, engineering, and biology when modeling complex systems.

What methods can I use to solve nonlinear integro-differential equations?

There are several methods to solve nonlinear integro-differential equations, including analytical methods like perturbation techniques, the method of successive approximations, and the use of integral transforms. Numerical methods such as finite difference methods, finite element methods, and numerical integration techniques are also commonly employed when analytical solutions are difficult to obtain.

How do I identify the boundary or initial conditions for my problem?

To identify the boundary or initial conditions for your nonlinear integro-differential equation, you need to consider the physical context of the problem you are modeling. These conditions usually come from the specifics of the system being studied, such as initial values at a starting time or values at the boundaries of the spatial domain. Carefully analyzing the problem can help you determine these conditions.

Can I use software tools to find the solution for x_{2}(t)?

Yes, there are various software tools available that can assist in solving nonlinear integro-differential equations. Tools such as MATLAB, Mathematica, and Python libraries (like SciPy) provide numerical solvers and built-in functions that can help you implement the methods needed to find the solution for x_{2}(t). These tools can handle complex calculations and provide visualizations of the results.

What are some common applications of nonlinear integro-differential equations?

Nonlinear integro-differential equations are used in a wide range of applications, including population dynamics in ecology, heat conduction in materials, fluid dynamics, and control systems in engineering. They are particularly useful in modeling systems where the current state depends on both past states and instantaneous rates of change, capturing the essence of memory and delay effects in dynamic systems.

Back
Top