- #1
Math100
- 802
- 221
- Homework Statement
- Consider the nonlinear integro-differential equation ## \frac{dx}{dt}=-\lambda x(t)+\epsilon x(t)\int_{0}^{\infty}f(t-s)x(s)ds, \lvert \epsilon \rvert<<1, x(0)=A ##, where
## \lambda ## is a positive constant and ## f(z) ## is a sufficiently well-behaved function.
Use perturbation methods to show that the solution of this equation can be expressed as ## x(t)=x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}) ##, where ## x_{0}(t)=Ae^{-\lambda t},
x_{1}(t)=x_{0}(t)\int_{0}^{t}\int_{0}^{\infty}f(u-s)x_{0}(s)dsdu,
x_{2}(t)=e^{-\lambda t}\int_{0}^{t}du e^{\lambda u}\int_{0}^{\infty}ds f(u-s)(x_{0}(u)x_{1}(s)+x_{0}(s)x_{1}(u)) ##. If ## f(z)=e^{-\mu\lvert z \rvert}, \mu>0 ##, show that ## x(t)=Ae^{-\lambda t}(1+\frac{A\epsilon}{\mu^{2}-\lambda^{2}}(\frac{2\mu}{\lambda}(1-e^{-\lambda t})-\frac{\mu+\lambda}{\mu}(1-e^{-\mu t})))+O(\epsilon^{2}) ##,
for ## \mu\neq\lambda ##, and ## x(t)=Ae^{-\lambda t}(1+\frac{A\epsilon}{2\lambda^{2}}(3(1-e^{-\lambda t})-2\lambda te^{-\lambda t}))+O(\epsilon^{2}) ##, for ## \mu=\lambda ##.
- Relevant Equations
- None.
Proof:
Consider the nonlinear integro-differential equation
## \frac{dx}{dt}=-\lambda x(t)+\epsilon x(t)\int_{0}^{\infty}f(t-s)x(s)ds, \lvert \epsilon \rvert<<1, x(0)=A ##,
where ## \lambda ## is a positive constant and ## f(z) ## is a sufficiently well-behaved function.
Let ## \epsilon=0 ##.
Then the unperturbed equation is ## \frac{dx}{dt}=-\lambda x(t) ## with the initial condition ## x(0)=A ##.
This gives ## \frac{dx}{dt}=-\lambda x(t)\implies \frac{dx}{x}=-\lambda dt\implies\int\frac{dx}{x}
=-\lambda\int dt\implies ln\lvert x \rvert=-\lambda t+C\implies
x=Ce^{-\lambda t} ## where ## C ## is the constant of integration.
Since ## x(0)=A ##, it follows that ## A=C ##, so we have ## x=Ae^{-\lambda t} ##.
Hence, ## x_{0}(t)=Ae^{-\lambda t} ##.
Applying the perturbation theory produces ## x(t)=x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}) ##
for ## \lvert \epsilon \rvert<<1 ##.
By direct substitution of this expansion ## x(t)=x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}) ## into the original equation, we get ## \frac{d}{dt}(x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}))
=-\lambda(x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}))+\epsilon(x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}))\int_{0}^{\infty}f(t-s)(x_{0}(s)+\epsilon x_{1}(s)+\epsilon^{2}x_{2}(s)+O(\epsilon^{3})) ## for ## \lvert \epsilon \rvert<<1, x(0)=A ##, where ## \lambda ## is a positive constant and ## f(z) ## is a sufficiently well-behaved function.
Observe that ## \frac{d}{dt}(x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}))
=-\lambda x_{0}(t)-\epsilon\lambda x_{1}(t)-\epsilon^{2}\lambda x_{2}(t)-\lambda O(\epsilon^{3})
+(\epsilon x_{0}(t)+\epsilon^{2}x_{1}(t)+\epsilon^{3}x_{2}(t)+\epsilon O(\epsilon^{3}))\int_{0}^{\infty}f(t-s)(x_{0}(s)
+\epsilon x_{1}(s)+\epsilon^{2}x_{2}(s)+O(\epsilon^{3}))=-A\lambda e^{-\lambda t}-\epsilon\lambda x_{1}(t)-\epsilon^{2}\lambda x_{2}(t)+O(\epsilon^{3})+(A\epsilon e^{-\lambda t}+\epsilon^{2}x_{1}(t)+\epsilon^{3}x_{2}(t)+O(\epsilon^{3}))\int_{0}^{\infty}f(t-s)(Ae^{-\lambda s}
+\epsilon x_{1}(s)+\epsilon^{2}x_{2}(s)+O(\epsilon^{3}))ds ##.
Now we will find ## x_{1}(t) ## and ## x_{2}(t) ## by grouping the terms with the same powers
of ## \epsilon ## together.
Note that ## -\epsilon\lambda x_{1}(t)+A\epsilon e^{-\lambda t}\int_{0}^{\infty}f(t-s)\cdot Ae^{-\lambda s}ds
=\epsilon(-\lambda x_{1}(t)+Ae^{-\lambda t}\int_{0}^{\infty}f(t-s)\cdot Ae^{-\lambda s}ds) ##,
so we have ## \frac{dx_{1}}{dt}=-\lambda x_{1}(t)+x_{0}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)ds ##.
This implies that ## \frac{dx_{1}}{dt}=-\lambda x_{1}(t)+x_{0}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)ds
\implies \frac{dx_{1}}{dt}=x_{0}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)ds
\implies x_{1}(t)=\int_{0}^{t}(x_{0}(u)\int_{0}^{\infty}f(u-s)x_{0}(s)ds)du
\implies x_{1}(t)=x_{0}(t)\int_{0}^{t}du\int_{0}^{\infty}f(u-s)x_{0}(s)ds ##.
Similarly, we have ## -\epsilon^{2}\lambda x_{2}(t)+A\epsilon e^{-\lambda t}\int_{0}^{\infty}
f(t-s)\cdot\epsilon x_{1}(s)ds+\epsilon^{2}x_{1}(t)\int_{0}^{\infty}f(t-s)\cdot Ae^{-\lambda s}ds
=\epsilon^{2}(-\lambda x_{2}(t)+Ae^{-\lambda t}\int_{0}^{\infty}f(t-s)\cdot x_{1}(s)ds
+x_{1}(t)\int_{0}^{\infty}f(t-s)\cdot Ae^{-\lambda s}ds=\epsilon^{2}(-\lambda x_{2}(t)
+x_{0}(t)\int_{0}^{\infty}f(t-s)x_{1}(s)ds+x_{1}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)ds ##,
which implies that ## \frac{dx_{2}}{dt}=-\lambda x_{2}(t)+x_{0}(t)\int_{0}^{\infty}
f(t-s)x_{1}(s)ds+x_{1}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)ds ##.
Thus, ## \frac{dx_{2}}{dt}=-\lambda x_{2}(t)+x_{0}(t)\int_{0}^{\infty}
f(t-s)x_{1}(s)ds+x_{1}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)ds\implies
\frac{dx_{2}}{dt}=x_{0}(t)\int_{0}^{\infty}f(t-s)x_{1}(s)ds+
x_{1}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)ds\implies
\frac{dx_{2}}{dt}=x_{0}(u)\int_{0}^{\infty}f(u-s)x_{1}(s)ds
+x_{1}(u)\int_{0}^{\infty}f(u-s)x_{0}(s)ds\implies
x_{2}(t)=\int_{0}^{t}(x_{0}(u)\int_{0}^{\infty}f(u-s)x_{1}(s)ds
+x_{1}(u)\int_{0}^{\infty}f(u-s)x_{0}(s)ds)du ##.
From here, how should I show/prove that ## x_{2}(t)=e^{-\lambda t}\int_{0}^{t}du e^{\lambda u}\int_{0}^{\infty}
ds f(u-s)(x_{0}(u)x_{1}(s)+x_{0}(s)x_{1}(u)) ##? Also, for the second part of the question/problem, I've constructed
a different proof as below:
Let ## f(z)=e^{-\mu\lvert z \rvert} ## for ## \mu>0 ##, where ## x(t)=x_{0}(t)+\epsilon x_{1}(t)+O(\epsilon^{2}) ## such that ## x_{0}(t)=Ae^{-\lambda t} ##
and ## x_{1}(t)=x_{0}(t)\int_{0}^{t}du\int_{0}^{\infty}ds f(u-s)x_{0}(s) ##.
By using direct substitution of both ## x_{0}(t), x_{1}(t) ##,
we have ## x(t)=Ae^{-\lambda t}+\epsilon(Ae^{-\lambda t}\int_{0}^{t}du\int_{0}^{\infty}ds
f(u-s)\cdot Ae^{-\lambda s})+O(\epsilon^{2})\implies
x(t)=Ae^{-\lambda t}+A\epsilon e^{-\lambda t}\int_{0}^{t}\int_{0}^{\infty}f(z)
\cdot Ae^{-\lambda s}dsdu\implies
x(t)=Ae^{-\lambda t}(1+A\epsilon\int_{0}^{t}\int_{0}^{\infty}e^{-\mu\lvert z \rvert}
\cdot e^{-\lambda s}dsdu)\implies
x(t)=Ae^{-\lambda t}(1+A\epsilon\int_{0}^{t}\int_{0}^{\infty}e^{-\mu\lvert u-s \rvert}\cdot e^{-\lambda s}dsdu)
\implies x(t)=Ae^{-\lambda t}(1+A\epsilon\int_{0}^{t}\int_{0}^{\infty}e^{-\mu\lvert u-s \rvert-\lambda s}dsdu) ##.
And from here, how should I show/prove that ## x(t)=Ae^{-\lambda t}(1+\frac{A\epsilon}{\mu^{2}-\lambda^{2}}
(\frac{2\mu}{\lambda}(1-e^{-\lambda t})-\frac{\mu+\lambda}{\mu}(1-e^{-\mu t})))+O(\epsilon^{2}) ## for
## \mu\neq\lambda, \mu>0 ##? Similarly, for ## \mu=\lambda ##?
Consider the nonlinear integro-differential equation
## \frac{dx}{dt}=-\lambda x(t)+\epsilon x(t)\int_{0}^{\infty}f(t-s)x(s)ds, \lvert \epsilon \rvert<<1, x(0)=A ##,
where ## \lambda ## is a positive constant and ## f(z) ## is a sufficiently well-behaved function.
Let ## \epsilon=0 ##.
Then the unperturbed equation is ## \frac{dx}{dt}=-\lambda x(t) ## with the initial condition ## x(0)=A ##.
This gives ## \frac{dx}{dt}=-\lambda x(t)\implies \frac{dx}{x}=-\lambda dt\implies\int\frac{dx}{x}
=-\lambda\int dt\implies ln\lvert x \rvert=-\lambda t+C\implies
x=Ce^{-\lambda t} ## where ## C ## is the constant of integration.
Since ## x(0)=A ##, it follows that ## A=C ##, so we have ## x=Ae^{-\lambda t} ##.
Hence, ## x_{0}(t)=Ae^{-\lambda t} ##.
Applying the perturbation theory produces ## x(t)=x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}) ##
for ## \lvert \epsilon \rvert<<1 ##.
By direct substitution of this expansion ## x(t)=x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}) ## into the original equation, we get ## \frac{d}{dt}(x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}))
=-\lambda(x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}))+\epsilon(x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}))\int_{0}^{\infty}f(t-s)(x_{0}(s)+\epsilon x_{1}(s)+\epsilon^{2}x_{2}(s)+O(\epsilon^{3})) ## for ## \lvert \epsilon \rvert<<1, x(0)=A ##, where ## \lambda ## is a positive constant and ## f(z) ## is a sufficiently well-behaved function.
Observe that ## \frac{d}{dt}(x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2}x_{2}(t)+O(\epsilon^{3}))
=-\lambda x_{0}(t)-\epsilon\lambda x_{1}(t)-\epsilon^{2}\lambda x_{2}(t)-\lambda O(\epsilon^{3})
+(\epsilon x_{0}(t)+\epsilon^{2}x_{1}(t)+\epsilon^{3}x_{2}(t)+\epsilon O(\epsilon^{3}))\int_{0}^{\infty}f(t-s)(x_{0}(s)
+\epsilon x_{1}(s)+\epsilon^{2}x_{2}(s)+O(\epsilon^{3}))=-A\lambda e^{-\lambda t}-\epsilon\lambda x_{1}(t)-\epsilon^{2}\lambda x_{2}(t)+O(\epsilon^{3})+(A\epsilon e^{-\lambda t}+\epsilon^{2}x_{1}(t)+\epsilon^{3}x_{2}(t)+O(\epsilon^{3}))\int_{0}^{\infty}f(t-s)(Ae^{-\lambda s}
+\epsilon x_{1}(s)+\epsilon^{2}x_{2}(s)+O(\epsilon^{3}))ds ##.
Now we will find ## x_{1}(t) ## and ## x_{2}(t) ## by grouping the terms with the same powers
of ## \epsilon ## together.
Note that ## -\epsilon\lambda x_{1}(t)+A\epsilon e^{-\lambda t}\int_{0}^{\infty}f(t-s)\cdot Ae^{-\lambda s}ds
=\epsilon(-\lambda x_{1}(t)+Ae^{-\lambda t}\int_{0}^{\infty}f(t-s)\cdot Ae^{-\lambda s}ds) ##,
so we have ## \frac{dx_{1}}{dt}=-\lambda x_{1}(t)+x_{0}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)ds ##.
This implies that ## \frac{dx_{1}}{dt}=-\lambda x_{1}(t)+x_{0}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)ds
\implies \frac{dx_{1}}{dt}=x_{0}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)ds
\implies x_{1}(t)=\int_{0}^{t}(x_{0}(u)\int_{0}^{\infty}f(u-s)x_{0}(s)ds)du
\implies x_{1}(t)=x_{0}(t)\int_{0}^{t}du\int_{0}^{\infty}f(u-s)x_{0}(s)ds ##.
Similarly, we have ## -\epsilon^{2}\lambda x_{2}(t)+A\epsilon e^{-\lambda t}\int_{0}^{\infty}
f(t-s)\cdot\epsilon x_{1}(s)ds+\epsilon^{2}x_{1}(t)\int_{0}^{\infty}f(t-s)\cdot Ae^{-\lambda s}ds
=\epsilon^{2}(-\lambda x_{2}(t)+Ae^{-\lambda t}\int_{0}^{\infty}f(t-s)\cdot x_{1}(s)ds
+x_{1}(t)\int_{0}^{\infty}f(t-s)\cdot Ae^{-\lambda s}ds=\epsilon^{2}(-\lambda x_{2}(t)
+x_{0}(t)\int_{0}^{\infty}f(t-s)x_{1}(s)ds+x_{1}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)ds ##,
which implies that ## \frac{dx_{2}}{dt}=-\lambda x_{2}(t)+x_{0}(t)\int_{0}^{\infty}
f(t-s)x_{1}(s)ds+x_{1}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)ds ##.
Thus, ## \frac{dx_{2}}{dt}=-\lambda x_{2}(t)+x_{0}(t)\int_{0}^{\infty}
f(t-s)x_{1}(s)ds+x_{1}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)ds\implies
\frac{dx_{2}}{dt}=x_{0}(t)\int_{0}^{\infty}f(t-s)x_{1}(s)ds+
x_{1}(t)\int_{0}^{\infty}f(t-s)x_{0}(s)ds\implies
\frac{dx_{2}}{dt}=x_{0}(u)\int_{0}^{\infty}f(u-s)x_{1}(s)ds
+x_{1}(u)\int_{0}^{\infty}f(u-s)x_{0}(s)ds\implies
x_{2}(t)=\int_{0}^{t}(x_{0}(u)\int_{0}^{\infty}f(u-s)x_{1}(s)ds
+x_{1}(u)\int_{0}^{\infty}f(u-s)x_{0}(s)ds)du ##.
From here, how should I show/prove that ## x_{2}(t)=e^{-\lambda t}\int_{0}^{t}du e^{\lambda u}\int_{0}^{\infty}
ds f(u-s)(x_{0}(u)x_{1}(s)+x_{0}(s)x_{1}(u)) ##? Also, for the second part of the question/problem, I've constructed
a different proof as below:
Let ## f(z)=e^{-\mu\lvert z \rvert} ## for ## \mu>0 ##, where ## x(t)=x_{0}(t)+\epsilon x_{1}(t)+O(\epsilon^{2}) ## such that ## x_{0}(t)=Ae^{-\lambda t} ##
and ## x_{1}(t)=x_{0}(t)\int_{0}^{t}du\int_{0}^{\infty}ds f(u-s)x_{0}(s) ##.
By using direct substitution of both ## x_{0}(t), x_{1}(t) ##,
we have ## x(t)=Ae^{-\lambda t}+\epsilon(Ae^{-\lambda t}\int_{0}^{t}du\int_{0}^{\infty}ds
f(u-s)\cdot Ae^{-\lambda s})+O(\epsilon^{2})\implies
x(t)=Ae^{-\lambda t}+A\epsilon e^{-\lambda t}\int_{0}^{t}\int_{0}^{\infty}f(z)
\cdot Ae^{-\lambda s}dsdu\implies
x(t)=Ae^{-\lambda t}(1+A\epsilon\int_{0}^{t}\int_{0}^{\infty}e^{-\mu\lvert z \rvert}
\cdot e^{-\lambda s}dsdu)\implies
x(t)=Ae^{-\lambda t}(1+A\epsilon\int_{0}^{t}\int_{0}^{\infty}e^{-\mu\lvert u-s \rvert}\cdot e^{-\lambda s}dsdu)
\implies x(t)=Ae^{-\lambda t}(1+A\epsilon\int_{0}^{t}\int_{0}^{\infty}e^{-\mu\lvert u-s \rvert-\lambda s}dsdu) ##.
And from here, how should I show/prove that ## x(t)=Ae^{-\lambda t}(1+\frac{A\epsilon}{\mu^{2}-\lambda^{2}}
(\frac{2\mu}{\lambda}(1-e^{-\lambda t})-\frac{\mu+\lambda}{\mu}(1-e^{-\mu t})))+O(\epsilon^{2}) ## for
## \mu\neq\lambda, \mu>0 ##? Similarly, for ## \mu=\lambda ##?
Last edited: