How should I show that all solutions are periodic?

  • Thread starter Math100
  • Start date
  • #1
Math100
802
222
Homework Statement
Consider the differential equation ## \ddot{x}+x+\frac{3}{2}\beta x\lvert x \rvert=0,
\beta\geq 0 ##.

a) Show that all solutions are periodic.
b) Deduce whether or not these solutions are Poincare stable.
Relevant Equations
None.
Proof: a)

Consider the differential equation ## \ddot{x}+x+\frac{3}{2}\beta x\lvert x \rvert=0 ##
for ## \beta\geq 0 ##.
By definition, the system of ## \ddot{x}+x+\frac{3}{2}\beta x\lvert x \rvert=0 ## for
## \beta\geq 0 ## is conservative because ## \ddot{x}=f(x) ## such that ## f(x) ##
is a function of ## x ## only and can be integrated once to give
## \frac{1}{2}\dot{x}^2+V(x)=E ##, where ## E ## is a constant and ## f(x)=-V'(x) ##.
Then we have ## \ddot{x}+x+\frac{3}{2}\beta x\lvert x \rvert=0\implies
\\dot{x}=-x-\frac{3}{2}\beta x\lvert x \rvert ##, so we get
## f(x)=-V'(x)=-x-\frac{3}{2}\beta x\lvert x \rvert ##.
This gives ## V(x)=-\int f(x)dx=\int (x+\frac{3}{2}\beta x\lvert x \rvert)dx
=\frac{x^2}{2}+\frac{\beta}{2}x^3\operatorname{sgn}(x)+C ## where
## \operatorname{sgn}(x) ## is the signum function of the real variable ## x ##
defined as ## \operatorname{sgn}(x)=1 ## for ## x>0 ##,
## \operatorname{sgn}(x)=-1 ## for ## x<0 ##.
Hence, ## E=\frac{1}{2}\dot{x}^2+V(x)=\frac{\dot{x}^2+\beta x^3\operatorname{sgn}(x)+x^2}{2}
=\frac{1}{2}\dot{x}^2+\frac{1}{6}(3\beta x^2\lvert x \rvert+3x^2) ##.
Since ## \frac{1}{2}\dot{x}^2+V(x)=E\implies \frac{1}{2}\dot{x}^2+V(x)=C ##
where ## \dot{x}=y, \dot{y}=f(x) ##, it follows that ## \frac{1}{2}\dot{x}^2=E-V(x)\implies
\dot{x}^2=2(E-V(x))\implies y=\pm\sqrt{2(E-V(x))} ##.
Thus, ## y=\pm\sqrt{2(E-V(x))}=\pm\sqrt{2(\frac{1}{2}\dot{x}^2+\frac{1}{6}(3\beta x^2\lvert x \rvert+3x^2))}
=\pm\sqrt{\dot{x}^2+\beta x^2(\lvert x \rvert-x\operatorname{sgn}))} ##.

From the work/proof shown above, how should I show that all solutions are periodic? Also for part b), how should I determine whether or not these solutions are Poincare stable?
 
Physics news on Phys.org
  • #2
What are the classical turning points (ie, points where ##\dot x = 0##)? What can you say about the time required to move between those points?
 
  • #3
I've got ## \dot{x}=y=0 ##. But what does this mean?
 
  • #4
What are those points in ##x##. Are they finite?

What happens at those points? Does the solution just pause and continue through or does it turn around?
 
  • #5
From the system of ## \dot{x}=y, \dot{y}=-x-\frac{3}{2}\beta x\lvert x \rvert ##, after setting ## \dot{x}=y=0 ## and ## \dot{y}=-x-\frac{3}{2}\beta x\lvert x \rvert=0 ##, we get that the fixed point occurs at ## (x, y)=(0, 0) ## and is stable centre.
 
  • #6
I was talking about the turning points, not the fixed point.
 
  • #7
How should I find the turning points then?
 
  • #8
Solve this:

Math100 said:
I've got ## \dot{x}=y=0 ##.
 
  • Like
Likes Math100
  • #9
Math100 said:
where ## \dot{x}=y,## ...
Thus, ## y=## ... ##\pm\sqrt{\dot{x}^2+\beta x^2(\lvert x \rvert-x\operatorname{sgn}))} ##.
Are you sure? If you replace ##y## in the second equation using the first equation and square both sides, ##\dot{x}^2## cancels and you're left with ##0=\beta x^2(\lvert x \rvert-x\operatorname{sgn}))##. Do you think that's true?
 
  • Like
Likes Math100
  • #10
renormalize said:
Are you sure? If you replace ##y## in the second equation using the first equation and square both sides, ##\dot{x}^2## cancels and you're left with ##0=\beta x^2(\lvert x \rvert-x\operatorname{sgn}))##. Do you think that's true?
Sorry, I think I've made some huge mistakes above from my initial/first post. The equation of the phase paths should be ## y=\pm\sqrt{2(C-V(x))} ## where ## \dot{x}=y, \dot{y}=f(x) ##. So I have ## y=\pm\sqrt{2(C-(\frac{x^2}{2}+\frac{\beta}{2}x^3\operatorname{sgn}(x)))} ## and ## y=0 ## for ## C=\frac{x^2}{2}+\frac{\beta}{2}x^3\operatorname{sgn}(x) ##. But how does this shows that all solutions are periodic?
 
  • #11
Orodruin said:
What are those points in ##x##. Are they finite?

What happens at those points? Does the solution just pause and continue through or does it turn around?
 
Back
Top