- #1
Math100
- 797
- 221
- Homework Statement
- Consider the equation ## \ddot{x}+x+\epsilon(\alpha x^2\operatorname{sgn}(x)+\beta x^{3})=0, 0<\epsilon<<1, \alpha>0, \beta>0 ##, where ## \alpha ## and ## \beta ## are constants, and the signum function, ## \operatorname{sgn}(x) ##, is defined by ## \operatorname{sgn}(x)=1 ## for ## x>0 ##, ## \operatorname{sgn}(x)=0 ## for ## x=0 ## and ## \operatorname{sgn}(x)=-1 ## for ## x<0 ##.
a) Determine the potential energy ## V(x) ## of the system, and show that all solutions of the equation are bounded and periodic, and that all the phase curves are invariant under reflections in both the x-axis and the ## \dot{x} ##-axis of the phase diagram. (You don't need to provide the phase diagram.)
b) Hence, with initial condition ## x(0)=0 ##, show that solutions with angular frequency ## \omega ## can be expressed as a Fourier series of the form ## x(t)=\sum_{k=1}^{\infty}B_{2k-1}sin((2k-1)\omega t)=B_{1}sin\omega t+B_{3}sin 3\omega t+... ##.
c) Assuming that for the Fourier series in part (b), ## \omega ## and ## B_{n}, n=1, 3, 5, ... ##, can be expanded as a power series in ## \epsilon ##, show that as ## \epsilon\to 0, \omega=1+O(\epsilon), B_{1}=O(1) ## and ## B_{n}=O(\epsilon) ## for ## n=3, 5, 7, ... ##.
- Relevant Equations
- The signum function is defined by ## \operatorname{sgn}(x)=1 ## for ## x>0 ##, ## \operatorname{sgn}(x)=0 ## for ## x=0 ## and ## \operatorname{sgn}(x)=-1 ## for ## x<0 ##.
a) Proof:
By definition, the potential energy ## V(x) ## is given by ## F(x)=-\frac{dV}{dx} ##.
Note that ## \ddot{x}=-\frac{dV}{dx} ## where ## \ddot{x}=-x-\epsilon(\alpha x^2\operatorname{sgn}(x)+\beta x^{3}) ##.
This gives ## \frac{dV}{dx}=x+\epsilon(\alpha x^2\operatorname{sgn}(x)+\beta x^{3})\implies
V(x)=\int (x+\epsilon(\alpha x^{2}\operatorname{sgn}(x)+\beta x^{3}))dx ##, so we have ##
V(x)=\frac{x^2}{2}+\frac{\epsilon\alpha}{3}x^{3}\operatorname{sgn}(x)+\frac{\beta x^{4}}{4}+C ##.
Hence, the potential energy ## V(x) ## of the system is
## V(x)=\frac{x^2}{2}+\frac{\epsilon\alpha}{3}x^{3}\operatorname{sgn}(x)+\frac{\beta x^4}{4} ##.
Now we will find all solutions of the equation ## \ddot{x}+x+\epsilon(\alpha x^{2}\operatorname{sgn}(x)+\beta x^{3})=0,
0<\epsilon<<1, \alpha>0, \beta>0 ## where ## \alpha ## and ## \beta ## are constants and the signum function ## \operatorname{sgn}(x) ## is defined by ## \operatorname{sgn}(x)=1 ## for ## x>0 ##, ## \operatorname{sgn}(x)=0 ## for ## x=0 ## and ## \operatorname{sgn}(x)=-1 ## for ## x<0 ##.
Let ## \epsilon=0 ##.
Then the unperturbed equation is ## \ddot{x}+x=0 ## and this has root ## x=x_{0} ## such that the general solution is
## x_{0}(t)=A\cos(t)+B\sin(t) ##, where ## A ## and ## B ## are constants.
Applying the perturbation method produces ## x(t)=x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2} x_{2}(t)+... ## for ## 0<\epsilon<<1 ##.
From here, what should I do in order to find all solutions of the given equation and show/prove that all solutions of this equation are bounded and periodic and that all the phase curves are invariant under reflections in both the x-axis and the ## \dot{x} ##-axis of the phase diagram? Also, is the work shown above correct up to here?
By definition, the potential energy ## V(x) ## is given by ## F(x)=-\frac{dV}{dx} ##.
Note that ## \ddot{x}=-\frac{dV}{dx} ## where ## \ddot{x}=-x-\epsilon(\alpha x^2\operatorname{sgn}(x)+\beta x^{3}) ##.
This gives ## \frac{dV}{dx}=x+\epsilon(\alpha x^2\operatorname{sgn}(x)+\beta x^{3})\implies
V(x)=\int (x+\epsilon(\alpha x^{2}\operatorname{sgn}(x)+\beta x^{3}))dx ##, so we have ##
V(x)=\frac{x^2}{2}+\frac{\epsilon\alpha}{3}x^{3}\operatorname{sgn}(x)+\frac{\beta x^{4}}{4}+C ##.
Hence, the potential energy ## V(x) ## of the system is
## V(x)=\frac{x^2}{2}+\frac{\epsilon\alpha}{3}x^{3}\operatorname{sgn}(x)+\frac{\beta x^4}{4} ##.
Now we will find all solutions of the equation ## \ddot{x}+x+\epsilon(\alpha x^{2}\operatorname{sgn}(x)+\beta x^{3})=0,
0<\epsilon<<1, \alpha>0, \beta>0 ## where ## \alpha ## and ## \beta ## are constants and the signum function ## \operatorname{sgn}(x) ## is defined by ## \operatorname{sgn}(x)=1 ## for ## x>0 ##, ## \operatorname{sgn}(x)=0 ## for ## x=0 ## and ## \operatorname{sgn}(x)=-1 ## for ## x<0 ##.
Let ## \epsilon=0 ##.
Then the unperturbed equation is ## \ddot{x}+x=0 ## and this has root ## x=x_{0} ## such that the general solution is
## x_{0}(t)=A\cos(t)+B\sin(t) ##, where ## A ## and ## B ## are constants.
Applying the perturbation method produces ## x(t)=x_{0}(t)+\epsilon x_{1}(t)+\epsilon^{2} x_{2}(t)+... ## for ## 0<\epsilon<<1 ##.
From here, what should I do in order to find all solutions of the given equation and show/prove that all solutions of this equation are bounded and periodic and that all the phase curves are invariant under reflections in both the x-axis and the ## \dot{x} ##-axis of the phase diagram? Also, is the work shown above correct up to here?