- #1
Math100
- 797
- 221
- Homework Statement
- a) Show that the stationary path of the functional ## S[y]=\int_{0}^{v}(y'^2+y^2)dx, y(0)=1, y(v)=v, v>0 ##, is given by ## y=\cosh(x)+B\sinh(x), 0\leq x\leq v ##, where ## B ## and ## v ## are given by the solutions of the equations ## v=\cosh(v)+B\sinh(v) ## and ## B^2-1=2\sinh(v)+2B\cosh(v) ##.
b) Use these equations to show that ## v ## is given by the real solution(s) of ## f(v)=0 ##, where ## f(v)=v^2-2v(1+\sinh(v))\cosh(v)+1+2\sinh(v) ##.
- Relevant Equations
- Euler-Lagrange equation: ## \frac{d}{dx}(\frac{\partial F}{\partial y'})-\frac{\partial F}{\partial y}=0, y(a)=A, y(b)=B ## for the functional ## S[y]=\int_{a}^{b}F(x, y, y')dx, y(a)=A, y(b)=B ##.
a)
Consider the functional ## S[y]=\int_{0}^{v}(y'^2+y^2)dx, y(0)=1, y(v)=v, v>0 ##.
By definition, the Euler-Lagrange equation is ## \frac{d}{dx}(\frac{\partial F}{\partial y'})-\frac{\partial F}{\partial y}=0, y(a)=A, y(b)=B ## for the functional ## S[y]=\int_{a}^{b}F(x, y, y')dx, y(a)=A, y(b)=B ##.
Let ## F(x, y, y')=y'^2+y^2 ##.
Then ## \frac{\partial F}{\partial y'}=2y' ## and ## \frac{\partial F}{\partial y}=2y ##.
This gives ## \frac{d}{dx}(\frac{\partial F}{\partial y'})=2y'' ##.
Thus, the Euler-Lagrange equation is ## 2y''-2y=0\implies y''-y=0 ##.
Note that the general solution is ## y(x)=A\cosh(x)+B\sinh(x) ##, where ## A ## and ## B ## are constants.
Applying the boundary-value conditions ## y(0)=1 ## and ## y(v)=v, v>0 ## produce:
## y(0)=1\implies 1=A\cosh(0)+B\sinh(0)\implies 1=A+0\implies A=1 ## and
## y(v)=v\implies v=A\cosh(v)+B\sinh(v)\implies v=\cosh(v)+B\sinh(v) ##.
Based on my work above, how can I show that ## B ## is given by the solution of the equation ## B^2-1=2\sinh(v)+2B\cosh(v) ##? I've tried to solve for ## B ## first by getting ## B=\frac{v-\cosh(v)}{\sinh(v)} ##, but this expression didn't help me at all in showing this. Also, for part b) of this problem, I've got ## f(\cosh(v)+B\sinh(v))=(\cosh(v)+B\sinh(v))^2-2(\cosh(v)+B\sinh(v))(1+\sinh(v))\cosh(v)+1+2\sinh(v)=\cosh^2(v)+2\cosh(v)\cdot B\sinh(v)+B^2\sinh^2(v)-2\cosh^2(v)-2B\sinh(v)\cdot \cosh(v)-2\sinh(v)\cdot \cosh^2(v)-2B\sinh^2(v)\cdot \cosh(v)+1+2\sinh(v)=0 ## after I substituted the equation of ## v=\cosh(v)+B\sinh(v) ## but how should I solve for ## v ## in here by solving the equation ## f(v)=0 ##?
Consider the functional ## S[y]=\int_{0}^{v}(y'^2+y^2)dx, y(0)=1, y(v)=v, v>0 ##.
By definition, the Euler-Lagrange equation is ## \frac{d}{dx}(\frac{\partial F}{\partial y'})-\frac{\partial F}{\partial y}=0, y(a)=A, y(b)=B ## for the functional ## S[y]=\int_{a}^{b}F(x, y, y')dx, y(a)=A, y(b)=B ##.
Let ## F(x, y, y')=y'^2+y^2 ##.
Then ## \frac{\partial F}{\partial y'}=2y' ## and ## \frac{\partial F}{\partial y}=2y ##.
This gives ## \frac{d}{dx}(\frac{\partial F}{\partial y'})=2y'' ##.
Thus, the Euler-Lagrange equation is ## 2y''-2y=0\implies y''-y=0 ##.
Note that the general solution is ## y(x)=A\cosh(x)+B\sinh(x) ##, where ## A ## and ## B ## are constants.
Applying the boundary-value conditions ## y(0)=1 ## and ## y(v)=v, v>0 ## produce:
## y(0)=1\implies 1=A\cosh(0)+B\sinh(0)\implies 1=A+0\implies A=1 ## and
## y(v)=v\implies v=A\cosh(v)+B\sinh(v)\implies v=\cosh(v)+B\sinh(v) ##.
Based on my work above, how can I show that ## B ## is given by the solution of the equation ## B^2-1=2\sinh(v)+2B\cosh(v) ##? I've tried to solve for ## B ## first by getting ## B=\frac{v-\cosh(v)}{\sinh(v)} ##, but this expression didn't help me at all in showing this. Also, for part b) of this problem, I've got ## f(\cosh(v)+B\sinh(v))=(\cosh(v)+B\sinh(v))^2-2(\cosh(v)+B\sinh(v))(1+\sinh(v))\cosh(v)+1+2\sinh(v)=\cosh^2(v)+2\cosh(v)\cdot B\sinh(v)+B^2\sinh^2(v)-2\cosh^2(v)-2B\sinh(v)\cdot \cosh(v)-2\sinh(v)\cdot \cosh^2(v)-2B\sinh^2(v)\cdot \cosh(v)+1+2\sinh(v)=0 ## after I substituted the equation of ## v=\cosh(v)+B\sinh(v) ## but how should I solve for ## v ## in here by solving the equation ## f(v)=0 ##?