- #1
Jack3
- 9
- 0
Suppose {f_n} is a sequence of functions that converges almost everywhere to a function f
and define F_n = sup_k=1,...n |f_n| .
Show that if the integrals of F_n remain bounded as n goes to infinity,
then lim_n ∫〖f_n dm〗 = ∫〖f dm〗.
and define F_n = sup_k=1,...n |f_n| .
Show that if the integrals of F_n remain bounded as n goes to infinity,
then lim_n ∫〖f_n dm〗 = ∫〖f dm〗.
Last edited: