- #1
Math100
- 797
- 221
- Homework Statement
- Consider the system of equations ## \frac{dx}{dt}=(a-by)x(1-x^2), 0<x<1, \frac{dy}{dt}=-(c-dx)y(1-y^2), 0<y<1 ##, where ## a, b, c ## and ## d ## are positive constants.
Show that the transformation ## x=\frac{1}{\sqrt{1+e^{-2q}}}, y=\frac{1}{\sqrt{1+e^{-2p}}} ## makes the system Hamiltonian, with Hamiltonian function ## H(q, p)=ap-b\cdot ln(e^{p}+\sqrt{1+e^{2p}})+cq-d\cdot ln(e^{q}+\sqrt{1+e^{2q}}) ##. (Hint: You may find the following indefinite integral useful: ## \int \frac{dx}{\sqrt{1+e^{-2x}}}=ln(e^{x}+\sqrt{1+e^{2x}}). ##)
- Relevant Equations
- By definition, a system ## \dot{x}=X(x, y), \dot{y}=Y(x, y) ## is called a Hamiltonian system if there exists a function ## H(x, y) ## such that ## X=\frac{\partial H}{\partial y} ## and ## Y=\frac{\partial H}{\partial x} ##. Then ## H ## is called the Hamiltonian function for the system. A necessary and sufficient condition for ## \dot{x}=X(x, y) ## and ## \dot{y}=Y(x, y) ## to be Hamiltonian is that ## \frac{\partial X}{\partial x}+\frac{\partial Y}{\partial y}=0 ##.
Proof:
Consider the transformation ## x=\frac{1}{\sqrt{1+e^{-2q}}} ## and ## y=\frac{1}{\sqrt{1+e^{-2p}}} ## with the Hamiltonian function ## H(q, p)=ap-b\cdot ln(e^{p}+\sqrt{1+e^{2p}})+cq-d\cdot ln(e^{q}+\sqrt{1+e^{2q}}) ##.
Let ## \dot{x}=\frac{dx}{dt}=(a-by)x(1-x^2)=(a-by)(x-x^3) ## and ## \dot{y}=\frac{dy}{dt}=-(c-dx)y(1-y^2)=-(c-dx)(y-y^3) ##.
By using direct substitution of the transformation ## x=\frac{1}{\sqrt{1+e^{-2q}}} ## and ## y=\frac{1}{\sqrt{1+e^{-2p}}} ##,
we have that ## \dot{x}=\frac{dx}{dt}=(a-\frac{b}{\sqrt{1+e^{-2p}}})(\frac{1}{\sqrt{1+e^{-2q}}}-(\frac{1}{\sqrt{1+e^{-2q}}})^3)=(a-\frac{b}{\sqrt{1+e^{-2p}}})(\frac{e^{q}}{(e^{2q}+1)^{3/2}}) ## and ## \dot{y}=\frac{dy}{dt}=-(c-\frac{d}{\sqrt{1+e^{-2q}}})(\frac{1}{\sqrt{1+e^{-2p}}}-(\frac{1}{\sqrt{1+e^{-2p}}})^3)=-(c-\frac{d}{\sqrt{1+e^{-2q}}})(\frac{e^{p}}{(e^{2p}+1)^{3/2}}) ##.
Note that ## X=\frac{\partial H}{\partial p}=a-b(\frac{1}{e^{p}+\sqrt{1+e^{2p}}})(e^{p}+\frac{e^{2p}}{\sqrt{1+e^{2p}}}) ## and ## Y=\frac{\partial H}{\partial q}=c-d(\frac{1}{e^{q}+\sqrt{1+e^{2q}}})(e^{q}+\frac{e^{2q}}{\sqrt{1+e^{2q}}}) ##.
Above is my proof for this problem. Is everything correct up to here? How should I finish this proof? What needs to be done?
Consider the transformation ## x=\frac{1}{\sqrt{1+e^{-2q}}} ## and ## y=\frac{1}{\sqrt{1+e^{-2p}}} ## with the Hamiltonian function ## H(q, p)=ap-b\cdot ln(e^{p}+\sqrt{1+e^{2p}})+cq-d\cdot ln(e^{q}+\sqrt{1+e^{2q}}) ##.
Let ## \dot{x}=\frac{dx}{dt}=(a-by)x(1-x^2)=(a-by)(x-x^3) ## and ## \dot{y}=\frac{dy}{dt}=-(c-dx)y(1-y^2)=-(c-dx)(y-y^3) ##.
By using direct substitution of the transformation ## x=\frac{1}{\sqrt{1+e^{-2q}}} ## and ## y=\frac{1}{\sqrt{1+e^{-2p}}} ##,
we have that ## \dot{x}=\frac{dx}{dt}=(a-\frac{b}{\sqrt{1+e^{-2p}}})(\frac{1}{\sqrt{1+e^{-2q}}}-(\frac{1}{\sqrt{1+e^{-2q}}})^3)=(a-\frac{b}{\sqrt{1+e^{-2p}}})(\frac{e^{q}}{(e^{2q}+1)^{3/2}}) ## and ## \dot{y}=\frac{dy}{dt}=-(c-\frac{d}{\sqrt{1+e^{-2q}}})(\frac{1}{\sqrt{1+e^{-2p}}}-(\frac{1}{\sqrt{1+e^{-2p}}})^3)=-(c-\frac{d}{\sqrt{1+e^{-2q}}})(\frac{e^{p}}{(e^{2p}+1)^{3/2}}) ##.
Note that ## X=\frac{\partial H}{\partial p}=a-b(\frac{1}{e^{p}+\sqrt{1+e^{2p}}})(e^{p}+\frac{e^{2p}}{\sqrt{1+e^{2p}}}) ## and ## Y=\frac{\partial H}{\partial q}=c-d(\frac{1}{e^{q}+\sqrt{1+e^{2q}}})(e^{q}+\frac{e^{2q}}{\sqrt{1+e^{2q}}}) ##.
Above is my proof for this problem. Is everything correct up to here? How should I finish this proof? What needs to be done?