- #1
Math100
- 802
- 222
- Homework Statement
- Let ## n>1 ## be a positive integer such that the functional ## S[y]=\int_{0}^{1}(y')^{n}e^{y}dx, y(0)=1, y(1)=A>1 ##, has a stationary path given by ## y=n\ln(cx+e^{1/n}) ##, where ## c=e^{A/n}-e^{1/n} ##. Use the Jacobi equation to determine the nature of this stationary path.
- Relevant Equations
- Jacobi equation: ## \frac{d}{dx}(P(x)\frac{du}{dx})-Q(x)u=0, u(a)=0, u'(a)=1 ##, where ## P(x)=\frac{\partial^2 F}{\partial y'^2} ## and ## Q(x)=\frac{\partial^2 F}{\partial y^2}-\frac{d}{dx}(\frac{\partial^2 F}{\partial y\partial y'}) ## vanishes at ## x=\tilde{a} ##.
For sufficiently small ## b-a ##, we have
a) if ## P(x)=\frac{\partial^2 F}{\partial y'^2}>0, a\leq x\leq b, S[y] ## has a minimum;
b) if ## P(x)=\frac{\partial^2 F}{\partial y'^2}<0, a\leq x\leq b, S[y] ## has a maximum.
Jacobi's necessary condition: If the stationary path ## y(x) ## corresponds to a minimum of the functional ## S[y]=\int_{a}^{b}F(x, y, y')dx, y(a)=A, y(b)=B ##, and if ## P(x)=\frac{\partial^2 F}{\partial y'^2}>0 ## along the path, then the open interval ## a<x<b ## does not contain points conjugate to ## a ##.
A sufficient condition: If ## y(x) ## is an admissible function for the functional ## S[y]=\int_{a}^{b}F(x, y, y')dx, y(a)=A, y(b)=B ## and satisfies the three conditions listed below, then the functional has a weak local minimum along ## y(x) ##.
a) The function ## y(x) ## satisfies the Euler-Lagrange equation, ## \frac{d}{dx}(\frac{\partial F}{\partial y'})-\frac{\partial F}{\partial y}=0 ##.
b) Along the curve ## y(x), P(x)=\frac{\partial^2 F}{\partial y'^2}>0 ## for ## a\leq x\leq b ##.
c) The closed interval ## [a, b] ## contains no points conjugate to the point ## x=a ##.
Here's my work:
Let ## n>1 ## be a positive integer.
Consider the functional ## S[y]=\int_{0}^{1}(y')^{n}e^{y}dx, y(0)=1, y(1)=A>1 ##.
By definition, the Jacobi equation is ## \frac{d}{dx}(P(x)\frac{du}{dx})-Q(x)u=0, u(a)=0, u'(a)=1 ##, where ## P(x)=\frac{\partial^2 F}{\partial y'^2} ## and ## Q(x)=\frac{\partial^2 F}{\partial y^2}-\frac{d}{dx}(\frac{\partial^2 F}{\partial y\partial y'}) ## vanishes at ## x=\tilde{a} ##.
Note that ## F(x, y, y')=(y')^{n}e^{y} ##.
This gives ## P(x)=\frac{\partial^2 F}{\partial y'^2}=n(n-1)(y')^{n-2}e^{y} ## and ## Q(x)=\frac{\partial^2 F}{\partial y^2}-\frac{d}{dx}(\frac{\partial^2 F}{\partial y\partial y'})=(y')^{n}e^{y} ##.
Observe that ## \frac{d}{dx}(P(x)\frac{du}{dx})-Q(x)u=0\implies \frac{d}{dx}((n(n-1)(y')^{n-2}e^{y})\frac{du}{dx})-(y')^{n}e^{y}\cdot u=0\implies n(n-1)(y')^{n-2}e^{y}\frac{d^2u}{dx^2}-(y')^{n}e^{y}\cdot u=0 ##.
Thus, the Jacobi equation is ## n(n-1)\frac{d^2u}{dx^2}-(y')^2\cdot u=0 ##.
From this Jacobi equation above, how can we determine the nature of this stationary path?
Let ## n>1 ## be a positive integer.
Consider the functional ## S[y]=\int_{0}^{1}(y')^{n}e^{y}dx, y(0)=1, y(1)=A>1 ##.
By definition, the Jacobi equation is ## \frac{d}{dx}(P(x)\frac{du}{dx})-Q(x)u=0, u(a)=0, u'(a)=1 ##, where ## P(x)=\frac{\partial^2 F}{\partial y'^2} ## and ## Q(x)=\frac{\partial^2 F}{\partial y^2}-\frac{d}{dx}(\frac{\partial^2 F}{\partial y\partial y'}) ## vanishes at ## x=\tilde{a} ##.
Note that ## F(x, y, y')=(y')^{n}e^{y} ##.
This gives ## P(x)=\frac{\partial^2 F}{\partial y'^2}=n(n-1)(y')^{n-2}e^{y} ## and ## Q(x)=\frac{\partial^2 F}{\partial y^2}-\frac{d}{dx}(\frac{\partial^2 F}{\partial y\partial y'})=(y')^{n}e^{y} ##.
Observe that ## \frac{d}{dx}(P(x)\frac{du}{dx})-Q(x)u=0\implies \frac{d}{dx}((n(n-1)(y')^{n-2}e^{y})\frac{du}{dx})-(y')^{n}e^{y}\cdot u=0\implies n(n-1)(y')^{n-2}e^{y}\frac{d^2u}{dx^2}-(y')^{n}e^{y}\cdot u=0 ##.
Thus, the Jacobi equation is ## n(n-1)\frac{d^2u}{dx^2}-(y')^2\cdot u=0 ##.
From this Jacobi equation above, how can we determine the nature of this stationary path?