MHB How show that the points S, U and A are collinear?

  • Thread starter Thread starter maxkor
  • Start date Start date
  • Tags Tags
    Points
AI Thread Summary
To show that points S, U, and A are collinear, it is established that SU is perpendicular to TG, leading to the conclusion that angle relationships involving points B, C, and their tangents at T are crucial. The angles formed by the intersections of lines and circles indicate that U lies on the circumcircle of triangle ABC. The discussion emphasizes the importance of understanding the geometric properties and relationships between these points. A visual representation of the problem is suggested to aid comprehension. The thread revolves around proving collinearity through geometric reasoning and angle analysis.
maxkor
Messages
79
Reaction score
0
Circle $\omega$ is described on $ABC$. The tangents to the $\omega$ at points $B$ and $C$ intersect at $T$.
Point $S$ lies on the line $BC$ and $AS \perp AT$. Points $B_1$ and $C_1$ are points of intersection of the circle with a radius of $TB$ and center at the $T$ with a line $ST$. Let $BC_{1}$ and $B_{1} C$ cut at the point $G$, and $BB_{1}$ and $CC_{1}$ at the point $U$.
How show that the points S, U and A are collinear?

My try:
Let O the center of circle $\omega$. $SU \perp TG$. So $2\angle BAC=\angle BOC = 180^{\circ}-\angle BTC=\angle BTB_{1}+\angle CTC_{1}=180^{\circ}-\angle BB_{1}T - \angle TBB_{1}+180^{\circ}-\angle CC_{1}T- \angle TCC_{1}=360^{\circ}-2\angle BB_{1}T-2\angle CC_{1}T=2\left(180^{\circ}-\angle BB_{1}T-\angle CC_{1}T\right)=2\left(180^{\circ}-\angle UB_{1}C_{1}-\angle UC_{1}B_{1}\right)=2\angle B_{1}UC_{1}=2\angle BUC$
thus U lies on the circle ABC. And what next?
 
Mathematics news on Phys.org
maxkor said:
Circle $\omega$ is described on $ABC$.
@maxkor, what does "described on ABC mean?"

A drawing of the problem would be very helpful.

maxkor said:
The tangents to the $\omega$ at points $B$ and $C$ intersect at $T$.
Point $S$ lies on the line $BC$ and $AS \perp AT$. Points $B_1$ and $C_1$ are points of intersection of the circle with a radius of $TB$ and center at the $T$ with a line $ST$. Let $BC_{1}$ and $B_{1} C$ cut at the point $G$, and $BB_{1}$ and $CC_{1}$ at the point $U$.
How show that the points S, U and A are collinear?

My try:
Let O the center of circle $\omega$. $SU \perp TG$. So $2\angle BAC=\angle BOC = 180^{\circ}-\angle BTC=\angle BTB_{1}+\angle CTC_{1}=180^{\circ}-\angle BB_{1}T - \angle TBB_{1}+180^{\circ}-\angle CC_{1}T- \angle TCC_{1}=360^{\circ}-2\angle BB_{1}T-2\angle CC_{1}T=2\left(180^{\circ}-\angle BB_{1}T-\angle CC_{1}T\right)=2\left(180^{\circ}-\angle UB_{1}C_{1}-\angle UC_{1}B_{1}\right)=2\angle B_{1}UC_{1}=2\angle BUC$
thus U lies on the circle ABC. And what next?
 
  • Like
Likes Greg Bernhardt
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top