- #1
PRB147
- 128
- 0
- TL;DR Summary
- The mass term under Lorentz transformation
The Hamiltonian for a scalar field contains the term
$$\int d^3x m^2 \phi(x) \phi(x)$$, does it changs to the following form?
$$\int d^3x' {m'}^2 \phi'(x') \phi'(x')=\int d^3x' \gamma^2{m}^2 \phi(x) \phi(x)$$? As it is well known for a scalar field: $$\phi'(x')=\phi(x)$$ .
$$\int d^3x m^2 \phi(x) \phi(x)$$, does it changs to the following form?
$$\int d^3x' {m'}^2 \phi'(x') \phi'(x')=\int d^3x' \gamma^2{m}^2 \phi(x) \phi(x)$$? As it is well known for a scalar field: $$\phi'(x')=\phi(x)$$ .