- #1
Kashmir
- 468
- 74
I want some clarification on the potential operator ##V(\hat{x})##. Can you please help me
------------------------------
Is the action of ##V(\hat{x})## defined by its action on the position kets as ##\hat{V}(x)|x\rangle=V(x)|x\rangle##?
Then we'd have for any ket ##|\psi\rangle## that ##V(\hat{x})|\psi\rangle## ##=V(\hat{x}) \int d x|x\rangle\langle x \mid \psi\rangle####=\int d x V(x)|x\rangle\langle x \mid \psi\rangle##
And ##V(\hat{x}) \int d x|-x\rangle\langle x \mid \psi\rangle## equals ##\int d x V(-x)|-x\rangle\langle x \mid \psi\rangle##
Is that correct?
------------------------------
Is the action of ##V(\hat{x})## defined by its action on the position kets as ##\hat{V}(x)|x\rangle=V(x)|x\rangle##?
Then we'd have for any ket ##|\psi\rangle## that ##V(\hat{x})|\psi\rangle## ##=V(\hat{x}) \int d x|x\rangle\langle x \mid \psi\rangle####=\int d x V(x)|x\rangle\langle x \mid \psi\rangle##
And ##V(\hat{x}) \int d x|-x\rangle\langle x \mid \psi\rangle## equals ##\int d x V(-x)|-x\rangle\langle x \mid \psi\rangle##
Is that correct?