How to Approach Solving a Nonlinear Second Order ODE with a Quadratic Term?

In summary, solving a nonlinear second order ordinary differential equation (ODE) with a quadratic term involves several key steps. First, identify the specific form of the ODE and any initial or boundary conditions. Next, consider potential substitutions or transformations that can simplify the equation, such as reducing the order or using a change of variables. Analyzing the qualitative behavior of solutions can also provide insights. If an analytical solution is challenging, numerical methods or perturbation techniques might be employed. Finally, verify the solution against the original equation and conditions to ensure accuracy.
  • #1
Safinaz
261
8
Homework Statement
How to solvebthis second-order ODE:
Relevant Equations
##
\frac{\partial^2 x}{ \partial t^2} + b \frac{\partial x}{ \partial t} + C x - D x^2 =0
##

Or:

##
\ddot{x} + b \dot{x} + C x - D x^2 =0
##
Where

## b, C, D ## are constants.
I know how to solve similar ODEs like

##
\frac{\partial^2 x}{ \partial t^2} + b \frac{\partial x}{ \partial t} + C x =0
##

Where one can let ## x = e^{rt}##, and the equation becomes
##
r^2 + b r + C =0
##

Which can be solved as a quadratic equation.

But now the problem is that there is ##x^2## term, so if one used that substitution, we left by:
##
r^2 + b r + C + D e^{rt} =0
##

So any help to find the solution of the ODE
 
Physics news on Phys.org
  • #2
Safinaz said:
Where one can let x=ert, and the equation becomes
r2+br+C=0

Which can be solved as a quadratic equation.
You have got general solution of homogeneous differential equation. Then you have to find a particular solution to add that for inhomogeneous differential equation with x^2 term. Have you investigated x=constant ?
 
Last edited:
  • #3
anuttarasammyak said:
You have got homogeneous general solution. Then you have to find a special solution to add that. Have you investigated x=constant ?
The OP's equation is a non linear ODE?
 
  • #4
erobz said:
The OP's equation is a non linear ODE?
My bad. Thanks. By choosing sign of constants, the equation is interpreted as oscillation of a body in a viscous medium with harmonic if D=0 and inharmonic with D potential. x = 0 is stable, x= C/D is unstable point for small oscillation around.
 
  • Like
Likes erobz
  • #5
Safinaz said:
##\frac{\partial^2 x}{ \partial t^2} + b \frac{\partial x}{ \partial t} + C x - D x^2 =0
##
Or:
##
\ddot{x} + b \dot{x} + C x - D x^2 =0
##
The second version of your DE, using the notation with dots, suggests that x is a function of t alone. In that case the first version of the DE should be written without partials.
Like so:
##\frac{d^2 x}{dt^2} + B\frac{dx}{dt} + Cx - Dx^2 = 0##
Also, since C and D are uppercase, B should probably be uppercase as well.
erobz said:
The OP's equation is a non linear ODE?
Yes. I'm sure your question was rhetorical.
 
  • Like
Likes erobz

Similar threads

Back
Top